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when used at 12.5 μM, taraxasterol was able to 
enhance the proliferation of osteoblastic cells, 
compared with the other two concentrations in 
vitro.

Cell viability assay 

As presented in Figure 5, viable cells and dead 
cells were stained with calcein-AM/PI. The 

results demonstrated that taraxasterol exerted 
positive effects on survival. Images of calcein-
AM/PI staining demonstrated that the survival 
of cells, in the taraxasterol groups, was incre- 
ased compared with the control group. Con- 
sistent with the results of a cell proliferation 
assay (Figure 3), more viable cells than dead 
cells were detected in the taraxasterol groups, 
thus implying that taraxasterol was able to  
better support cell growth, compared with the 
control group. Among the taraxasterol groups, 
treatment with 12.5 μM exhibited the best 
effects, as evidenced by an increase in the 
number of viable cells.

ALP activity assay

ALP is produced by osteoblasts and is likely  
to be involved in the degradation of inorganic 
pyrophosphate to provide sufficient local phos-
phate or inorganic pyrophosphate, for mineral-
ization to occur. Commonly used as a marker of 
osteogenesis, ALP activity is assumed to reflect 
the degree of osteogenic differentiation.

As evidenced by ALP activity assay (Figure 6), 
taraxasterol groups showed much higher ALP 
activity, compared with the control, after 7 
days, although no significant difference was 
observed at day 3. In particular, ALP levels  

Figure 6. Time-course of alkaline phosphatase (ALP) 
activity and ALP staining of osteoblastic cells at vari-
ous concentrations (0 μM (Control), 6.25 μM (T1), 
12.5 μM (T2) and 25 μM (T3)) of taraxasterol. Relative 
ALP activity (units/mg protein) expressed as mean ± 
2SD. ALP activity in 12.5 μM taraxasterol was signifi-
cantly higher than that in other groups.

Figure 5. Confocal laser scanning microscopy images showing the viability of osteoblastic cells, cultured in vitro with 
0 μM (Control), 6.25 μM (T1), 12.5 μM (T2) and 25 μM (T3) taraxasterol for 3, 5 and 7 days. Cell seeding density: 4 × 
103/mL (original magnification × 100).



Taraxasterol could enhance osteogenic differentiation

534 Int J Clin Exp Med 2018;11(2):528-538

were the highest in the 12.5 μM taraxasterol 
group.

Alizarin red staining

Alizarin red staining was used to determine the 
calcium content of the constructs. Our investi-
gation revealed that bone-like nodules were 
formed in a time-dependent manner in all of 
the groups (Figure 7). Taraxasterol was effec-
tive in enhancing mineralization, as evidenced 
by the stronger expression of staining, espe-
cially at 12.5 μM.

Immunohistochemical assay

Further exploration of the expression of osteo-
genesis-related proteins was carried out by 
immunocytochemistry, with specific antibodies 
for COL-I (Figure 8A-D) and BMP-2 (Figure 
8E-H). COL-I, a major specific marker of the 
bone matrix, is highly expressed during the 
entire process of bone formation [21]. BMP-2 is 
a key molecule in the early stages of bone heal-
ing [22, 23], and it has been widely used for 
bone tissue regeneration [24, 25]. Consistent 
with the real-time PCR findings, the result clear-
ly shows that taraxasterol up-regulated the lev-
els of COL-I and BMP-2, with stronger positive 
staining than the control, especially at a con-
centration of 12.5 μM. In all the groups, the 

expression of both COL-I and BMP-2 increased 
over time.

RT-qPCR analysis

The proliferation-enhancing effect of taraxas-
terol on osteoblastic cells was further exam-
ined with respect to the gene expression of 
BMP-2, COL-I, BSP, OCN, ALP, and RUNX2  
after 3, 5, 7, and 14 days of culture. Figure 9 
shows that genes associated with osteogenic 
differentiation, including BMP-2, RUNX2, ALP, 
BSP, OCN, and COL-I, were all significantly up-
regulated by taraxasterol treatment (P < 0.05), 
especially at a dose of 12.5 μM. The effect of 
taraxasterol on osteogenic differentiation was 
dose-dependent from 0 μM to 12.5 μM. How- 
ever, at a concentration of 30 μM, slight down-
regulation was seen for all of the genes, com-
pared with those in the group of 12.5 μM tarax-
asterol. Among all of the osteogenesis-related 
genes, an exception was RUNX2, which peaked 
at day 14. The other genes showed a continu-
ous increase during the culture period.

Discussion

Osteoporosis, a musculoskeletal disease, is 
characterized by compromised bone strength, 
leading to an increased risk of fracture and 
electrolyte imbalance [26]. It is a severe dis-

Figure 7. Alizarin red staining of osteoblastic cells cultured with various concentrations (0 μM (Control), 6.25 μM (T1), 
12.5 μM (T2) and 25 μM (T3) in vitro) of taraxasterol for 3, 5 and 7 days. Cell seeding density: 4 × 103/mL (original 
magnification × 100).
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ease characterized by decreased bone mineral 
density and degraded bone fiber structure, 
which reduces the quality of life. Previous stud-
ies have shown that taraxasterol had anti-
inflammatory, antioxidant, and protective eff- 
ects [27]. In this study, osteogenic cells from 
rat calvaria bones were used to examine the 
effects of taraxasterol on osteogenesis, in vitro. 
Our study indicates that taraxasterol exhibits 
potent abilities to treat osteoporosis through 
enhancing osteoblastogenesis, and may serve 
as an appropriate pro-osteogenic agent.

In our study, we found that taraxasterol mark-
edly up-regulates ALP activity (Figure 6) and 
COL-I (Figure 8A-D) during the culture period. 
The process of osteoblast maturation includes 
three main developmental stages: prolifera-
tion, development of the ECM, and mineraliza-
tion [28]. ALP and COL-I are the most abundant 
elements in the osteoblast, which are generally 
increased during osteoblast differentiation 
[29]. COL-I comprises almost 90% of organic 
material during the formation of inorganic bone 
matrix to support the structure of osteogenesis 
[30, 31]. Among the groups, taraxasterol (6.25 
μM, 12.5 μM, and 25 μM) markedly increased 
the cell viability, ALP activities, and alizarin red 
staining area, which indicated that taraxasterol 
promoted the proliferation, differentiation, and 
mineralization of osteogenic cells. Our study 
has provided more evidence that taraxasterol 
exhibits potent abilities to stimulate osteoblast 
differentiation.

In addition, we investigated the proliferation of 
osteoblast cells. The MTT results have shown 

that taraxasterol accelerates cell growth in a 
dose-dependent manner. Our data indicated 
that taraxasterol at a low concentration (< 12.5 
μM) dramatically promotes proliferation of os- 
teoblast cells (Figure 2). Oxidative damage is 
an important contributor to the morphological 
and functional changes in osteoporotic bone. 
Aging increases the levels of reactive oxygen 
species (ROS) that cause oxidative stress, and 
induce osteoblast apoptosis [32]. Being a po- 
tent antioxidant [33], taraxasterol is a major 
mediator for reducing the levels of excessive 
ROS, which are considered to contribute to sev-
eral clinical symptoms [7, 8, 34]. Increased 
ROS with advancing age represents a patho-
physiological mechanism underlying age-relat-
ed (involutional) osteoporosis [8]. Previous stu- 
dies have shown that treatment of taraxasterol 
significantly inhibited production of inflamma-
tory cytokines, such as TNF-α, IL-6, IL-1β, and 
MCP-1 [35, 36], and the protective effects of 
taraxasterol in vivo [37]. These findings are 
consistent with our results, indicating that 
taraxasterol, at a proper dosage, holds great 
promise for promoting the proliferation of 
osteoblasts in order to provide a promising cell 
reservoir, for bone regeneration therapy.

Furthermore, we also analyzed the mRNA levels 
of bone morphogenetic protein-2 (BMP-2), runt-
related transcription factor 2 (RUNX2), alkaline 
phosphatase (ALP), bone sialoprotein (BSP), 
type I collagen (COL-I), and osteocalcin (OCN). 
Osteocalcin is a major protein produced by 
osteoblasts during bone formation. RUNX2, a 
master regulator essential for osteoblast devel-
opment and osteoblast maturation, plays a cru-

Figure 8. Immunohistochemical staining images revealed the presence of BMP-2 and Col I. Osteoblastic cells cultured 
in vitro with 0 μM (Control), 6.25 μM (T1), 12.5 μM (T2) and 25 μM (T3) taraxasterol for 7 days. Cell seeding density: 4 × 
103/mL (original magnification × 100).
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cial role in the early stage of bone calcification, 
since it favors bone formation and calcification 
[38]. OCN expression is regulated by RUNX2 
and osterix levels [39, 40]. The present study 
demonstrates that taraxasterol treatment of 
osteoblasts, after 14 days, increased RUNX2, 
BSP, and OCN gene expression to levels that 

were significantly higher than those of osteo-
blasts without taraxasterol treatment (Figure 
9). Therefore, these data further demonstrate 
that taraxasterol exhibited the probable under-
lying mechanism for therapy of osteoporosis, 
through enhancing BMP-2, RUNX2, ALP, BSP, 
COL-I, and OCN expression.

Figure 9. Quantitative comparison of neurotrophic-related gene expression by qRT-PCR. The taraxasterol cells were cul-
tured with 0 μM (Control), 6.25 μM (T1), 12.5 μM (T2) and 25 μM (T3) taraxasterol for 3 days, 5 days, 7 days and 14 days. 
The gene expression levels in taraxasterol media relative to the control group were analyzed by the 2-ΔΔCt method using 
GAPDH as the internal control. The data represent the mean ± SD of three independent culture experiments. 
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Importantly, the results of real-time PCR, bio-
chemical, and immunohistochemical assay, 
showed that expression of BMP-2, one of the 
major pathways for governing bone regenera-
tion, was consistently increased (Figures 8 and 
9). The probable underlying mechanism is that 
taraxasterol affects osteogenetic differentia-
tion through BMP-2 signaling, which regulates 
RUNX2 expression. BMP-2 signaling has been 
reported to control the expression and function 
of RUNX2 through the BMP/Smad signaling 
pathway. ALP is a primary marker of osteoblast 
differentiation. In our results, ALP, COL-I, and 
BMP-2 immunohistology staining directly indi-
cated an increase in bone matrix deposition 
over time, which was in agreement with RT-PCR 
data, particularly at 12.5 μM taraxasterol (Fi- 
gure 9B, 9C, and 9E). This suggests that tarax-
asterol adjusts the whole process of osteogen-
ic differentiation by controlling BMP-2 expres-
sion. Thus, our findings provide evidence that 
taraxasterol may have potential therapeutic 
value for treating bone metabolism disturbanc-
es in osteoblasts, such as osteoporosis.

In conclusion, taraxasterol has a regulatory 
effect on osteogenic function by increased ALP 
activity, upregulating expression of osteogenic 
genes, and promoting formation of bone-like 
nodules. This compound probably affects oste- 
ogenetic differentiation through the modulation 
of ALP, RUNX2, and BMP-2 expression. Mo- 
reover, taraxasterol has been found to promote 
the proliferation of osteoblasts, which may be 
related to its potential as an antioxidant, pro-
ducing favorable amounts of ROS in the cellular 
environment. All the results indicate that tarax-
asterol is a novel and potent candidate agent 
for the treatment of osteoporosis. Of course, 
the mechanisms and clinical applications of 
taraxasterol need to be further elucidated to 
make it a practical agent for the therapy of 
osteoporosis.
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