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21.58±1.92 mm-2 and 8 week intervention: 
28.46±2.77 mm-2). Apoptosis was significantly 
different between the 4 and 8-week treatment 
regimens (p<0.05).

The Masson’s trichrome staining results are 
shown in Figure 3. In the normal control rats, 
myocardial cells were stained red, collagen was 
stained blue and green, and red blood cells 
were stained orange. Less myocardial collagen 
was observed, with only a small amount sur-
rounding the vessels. The distribution of colla-
gen fibers in the myocardium was uniform and 

fine. In the rats with DCM, there was a signifi-
cant increase in the amount of collagen tissue. 
Thick collagen fibers were connected to each 
other in a network and were unevenly distribut-
ed, with a large amount surrounding myocardial 
cells and small blood vessels. CEPO and rhEPO 
decreased the amount of myocardial collagen, 
particularly after prolonged treatment.

As shown in Figure 3, TEM analysis of the myo-
cardial cells demonstrated that in the DCM 
group, there was a reduction in the myocardial 
myofilaments in the cytosol, and a number of 

Figure 3. Effect of CEPO on diabetic rat myocardial tissue structure. Rats were assigned to the following groups for a 
four week treatment intervention: A: Control group; B: DCM group; D: CEPO (1000 IU/kg) group; and F: rhEPO (1000 
IU/kg) group. For the eight week treatment intervention, the rats were assigned to the following groups: A’: Control 
group; B’: DCM group; D’: CEPO (1000 IU/kg) group; and F’: rhEPO (1000 IU/kg) group. (MTS, masson’s trichrome 
staining, Bar = 50 μm), (TEM, transmission electron microscopy, Bar = 200 nm).
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myocardial myofilaments dissolved. Cytoplas- 
mic matrices were cavitated. The intercalated 
discs were moderately separated. The number 
of mitochondria increased. Several mitochon-
dria were pyknotic in appearance. The number 
of myocardial myofilaments slightly decreased 
after treatment with CEPO. Dissolution only 
occurred in small sections of the sarcomeres. A 
small number of mitochondria were small and 
circular in shape. The difference was not signifi-
cant between EPO and CEPO treatment.

CEPO inhibits the protein expression of TGF-β1 
and CTGF

As shown in Figures 4-7, the protein expression 
levels of TGF-β1 and CTGF in the myocardial 
cells of the rats with DCM significantly incre- 
ased compared with those of the control rats 
(p<0.05). In comparison with the DCM rats, 
CEPO treatment dose-dependently decreased 
TGF-β1 and CTGF protein expression levels in 
myocardial cells (p<0.05). TGF-β1 and CTGF 
protein expression levels were not significantly 
different between the same-dose CEPO and 
rhEPO groups (p > 0.05), but they significantly 
differed between the 4 and 8-week treatment 
regimens (p<0.05). 

CEPO promotes activation of the p-
ERK(44/42)MAPK protein

The protein expression levels of p-ERK(44/42)
MAPK in the myocardial cells of the rats with 
DCM significantly increased compared with 
those of the control rats (p<0.05). Rats given 
middle and high doses of CEPO showed incre- 
ased protein expression levels of p-ERK(44/42)
MAPK in myocardial cells compared with the 
rats with DCM (p<0.05). p-ERK(44/42)MAPK 
protein expression levels significantly differed 
between the same-dose CEPO and rhEPO gro- 
ups (p<0.05), but they were not significantly dif-
ferent between the 4 and 8-week treatment 
regimens (Figures 8, 9, Supplementary Figure 
1).

Figure 4. Effect of CEPO on TGF-β1 protein expression in the myocardial immunohistochemical examination of rats 
with diabetic cardiomyopathy (DCM) (DAB×40). Rats were assigned to the following groups for a four week treat-
ment intervention: A: Control group; B: DCM group; C: CEPO (500 IU/kg) group; D: CEPO (1000 IU/kg) group; E: CEPO 
(2000 IU/kg) group; and F: rhEPO (1000 IU/kg) group. For the eight week treatment intervention, the rats were as-
signed to the following groups: A’: Control group; B’: DCM group; D’: CEPO (1000 IU/kg) group; and F’: rhEPO (1000 
IU/kg) group. Immunohistochemistry. Bar = 50 μm.

Figure 5. Comparison of TGF-β1 protein expression in 
different groups. Four week treatment intervention: 
A: Control group; B: DCM group; C: CEPO (500 IU/kg) 
group; D: CEPO (1000 IU/kg) group; E: CEPO (2000 
IU/kg) group; and F: rhEPO (1000 IU/kg) group. Eight 
week treatment intervention: A’: Control group; B’: 
DCM group; D’: CEPO (1000 IU/kg) group; and F’: 
rhEPO (1000 IU/kg) group. *, P<0.05 vs. control 
group; †, P<0.05 vs. DCM group; ‡, P< 0.05 vs. CEPO 
(500 IU/kg) group; §, P< 0.05 vs. CEPO (1000 IU/
kg) group; and ﹟, P< 0.05 vs. the corresponding four-
week intervention group. Immunohistochemistry.
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(EPOR) and does not show any hematopoietic 
activity in human cell signaling assays or af- 
ter chronic dosing in different animal species 
[10]. CEPO exerts cytoprotective effects in vitro 
and confers neuroprotection against stroke, 
spinal cord compression, diabetic neuropathy, 
and experimental autoimmune encephalomy-
elitis [10]. However, whether CEPO confers pro-
tection against DCM remains unknown.

CEPO and rhEPO exert varied effects on eryth-
ropoiesis. rhEPO binds to the classic receptor 
(EPOR) 2 and stimulates the proliferation and 
differentiation of red blood cells [10]. By con-
trast, CEPO does not bind to (EPOR) 2 and does 
not increase the risk of blood clot formation 
caused by excessive red blood cell production 

Figure 6. Effect of CEPO on CTGF protein expression in the myocardial immunohistochemical examination of rats 
with diabetic cardiomyopathy (DCM) (DAB×40). Rats were assigned to the following groups for a four week treat-
ment intervention: A: Control group; B: DCM group; C: CEPO (500 IU/kg) group; D: CEPO (1000 IU/kg) group; E: CEPO 
(2000 IU/kg) group; and F: rhEPO (1000 IU/kg) group. For the eight week treatment intervention, the rats were as-
signed to the following groups: A’: Control group; B’: DCM group; D’: CEPO (1000 IU/kg) group; and F’: rhEPO (1000 
IU/kg) group. Immunohistochemistry. Bar = 50 μm.

Figure 7. Comparison of CTGF protein expression in 
different groups. Four week treatment intervention: 
A: Control group; B: DCM group; C: CEPO (500 IU/kg) 
group; D: CEPO (1000 IU/kg) group; E: CEPO (2000 
IU/kg) group; and F: rhEPO (1000 IU/kg) group. For 
the eight week treatment intervention, the rats were 
assigned to the following groups: A’: Control group; 
B’: DCM group; D’: CEPO (1000 IU/kg) group; and 
F’: rhEPO (1000 IU/kg) group. *, P<0.05 vs. control 
group; †, P<0.05 vs. DCM group; ‡, P< 0.05 vs. CEPO 
(500 IU/kg) group; §, P< 0.05 vs. CEPO (1000 IU/
kg) group; and ﹟, P< 0.05 vs. the corresponding four-
week intervention group. Immunohistochemistry.

Figure 8. Effect of CEPO on ERK(44/42)MAPK sig-
nal pathway protein expression in DCM rat myocar-
dium. Rats were assigned to the following groups for 
a four week treatment intervention: A: Control group; 
B: DCM group; C: CEPO (500 IU/kg) group; D: CEPO 
(1000 IU/kg) group; E: CEPO (2000 IU/kg) group; 
and F: rhEPO (1000 IU/kg) group. For the eight week 
treatment intervention, the rats were assigned to the 
following groups: A’: Control group; B’: DCM group; D’: 
CEPO (1000 IU/kg) group; and F’: rhEPO (1000 IU/
kg) group. Western blot.

Discussion

In this study, we revealed that CEPO, a carbam-
oyl derivative of EPO, decreased serum levels 
of TG and TC and partly attenuated myocardial 
pathological damage through the activation of 
the p-ERK(44/42)MAPK signaling pathway. This 
pathway is known to regulate myocardial cell 
apoptosis in diabetic rats. 

Previous studies have revealed that CEPO  
does not bind to the classical EPO receptor 
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[10, 15]. EPOR can physically interact with the 
common β receptor (βcR), also known as CD- 
131, to provide increased ligand-binding af- 
finity to the receptor complex. EPOR is also a 
signal-transducing subunit shared by the gran-
ulocyte-macrophage colony stimulating factor 
and IL-3 and IL-5 receptors [16, 17]. CEPO 
exerts anti-apoptotic effects by binding to 
EPOR-CD131 [18].

In this study, CEPO did not affect GLU levels but 
significantly decreased serum TG and TC levels 
in rats with DCM. EPO reduced the levels of 
serum TG and TC but did not affect GLU levels. 
The effect of CEPO was more significant than 
that of the same dose of EPO. These results 
suggest that (EPOR) 2 and EPOR-CD131 may 
both be involved in the metabolism of TG and 
TC.

In addition to glucose and lipid metabolic dys-
function, myocardial fibrosis is a major patho-
logical change associated with diabetes. The 
pathological process of myocardial fibrosis in- 
cludes cell necrosis, apoptosis, and loss, as 
well as an abnormal increase in extracellular 
matrix (ECM) content and excessive deposition. 
Collagen fibers, which constitute the frame-
work of the ECM, are stained blue or green by 
Masson’s trichrome. In this study, we revealed 
that the quantity of collagen tissue significantly 
increased in rats with DCM. In these rats, thick 
collagen fibers were connected to each other in 

a network and were unevenly distributed. CEPO 
and rhEPO decreased the amount of myocardi-
al collagen. These results suggest that CEPO 
may ameliorate cardiac fibrosis in the develop-
ment of DCM. 

TGF-β, a cytokine important in the pathogene-
sis of myocardial fibrosis [19], functions as a 
profibrotic cytokine and as a growth factor  
in several pathophysiological processes [20]. 
TGF-β1 activity, an important factor of myocar-
dial fibrosis and failure, is enhanced as a result 
of high levels of blood glucose and induction of 
angiotensin II [5, 21, 22]. TGF-β1 affects left 
ventricular remodeling, myocardial hypertro-
phy, and fibrosis; the plasma level and activity 
of TGF-β1 in myocardial tissues provides labo-
ratory standards for the early diagnosis and 
prevention of heart diseases associated with 
diabetes [23]. Recent studies have found that 
reducing the expression of TGF-β1 protein can 
inhibit myocardial fibrosis in high-fat and STZ-
induced diabetic rats [24-26]. 

CTGF, a downstream mediator of the TGF-β 
pathway, plays a major role in adverse remo- 
deling through promotion of myocardial fibros- 
is and ECM production in connective tissues 
[26-28].

In this study, the protein expression levels of 
TGF-β1 and CTGF increased in diabetic rats; 
after administration of CEPO, however, these 
levels decreased. CEPO treatment exhibited a 
dose- and time-dependent relationship to TGF-
β1 and CTGF expression. Thus, we conclude 
that CEPO dose-dependently inhibits myocar-
dial fibrosis in diabetic rats.

Mitogen-activated protein kinases (MAPKs) are 
multifunctional regulators that play indispens-
able roles in a number of biological processes 
in the heart [29, 30]. These processes include 
cell proliferation, survival, apoptosis, actin reor-
ganization and cytokine production [29]. The 
MAPK subfamilies include extracellular signal-
regulated kinases (ERKs), c-Jun NH2-terminal 
kinases, p38 kinase, and large MAPKs (BMK or 
ERK5) [30-32].

Some studies have suggested that activation of 
ERK signaling is one of the major components 
of the reperfusion injury salvage kinase path-
way [33, 34]. In the present study, our findings 
indicated that CEPO could significantly activate 

Figure 9. Comparison of ERK(44/42)MAPK signal 
pathway protein expression in different groups. A: 
Control group; B: DCM group; C: CEPO (500 IU/kg) 
group; D: CEPO (1000 IU/kg) group; E: CEPO (2000 
IU/kg) group; F: rhEPO (1000 IU/kg) group; A’: Con-
trol group; B’: DCM group; D’: CEPO (1000 IU/kg) 
group; and F’: rhEPO (1000 IU/kg) group. *, P<0.05 
vs. control group, and †, P< 0.05 vs. DCM group. 
Western blot.
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the ERK (44/42) signaling pathway in the myo-
cardium of diabetic rats. However, CEPO treat-
ment did not exhibit a dose- or time-dependent 
relationship to the protein expression of ERK 
(44/42). Meanwhile, p-ERK (44/42) protein ex- 
pression levels significantly differed between 
the same-dose CEPO and rhEPO groups. These 
results indicate that another pathway may be 
involved in ERK (44/42) activation.

In conclusion, CEPO partially protects the myo-
cardium from fibrosis through the activation of 
the ERK (44/42) pathway. 
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Supplementary Figure 1. ERK(44/42)MAPK signal pathway protein expression in different groups. Western blot 
(from left to right: A, B, C, D, E, F, A’, B’, D’, F’).


