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Abstract: It has been shown that the neural control of renal function is exerted by the CNS via sympathetic innerva-
tions of the kidneys. Developments in neural circuit researches over the past two decades have given us remark-
able insight into the renal disorders. Whether the information is neurochemical and neural circuitry structural, a 
range of renal diseases will undoubtedly benefit from an improved scientific understanding of the pathophysiologic 
changes that occur in the neural circuits. In this review, we explore the neural circuit mechanisms of renal diseases 
from experimental and clinical studies. Further studies should be undertaken to elucidate the nature of deep brain 
stimulation so that we may more effectively apply the neurostimulation to avoid these special complications.

Keywords: Renal disease, neural circuits, deep brain stimulation, pseudorabies virus, melanocortinergic circuits, 
melanocortin-4 receptor

Introduction

It has been shown that the neural control of 
renal function is exerted by the CNS via sympa-
thetic innervations of the kidneys [1-4]. 
Developments in neural circuit researches over 
the past two decades have given us remark-
able insight into the renal disorders [1, 5-8]. 
Whether the information is neurochemical and 
neural circuitry structural, a range of renal dis-
eases will undoubtedly benefit from an 
improved scientific understanding of the patho-
physiologic changes that occur in the neural 
circuits. A better understanding of mechanisms 
about deep brain stimulation-induced renal dis-
eases should aid development of successful 
new therapies for renal diseases. In this review, 
we explore the neural circuit mechanisms of 
renal diseases from experimental and clinical 
studies. 

Deep brain stimulation-induced renal dis-
eases

Acute renal disease originated from the CNS is 
one area where dramatic strides in our under-
standing of mechanisms have occurred. The 

study of Palkovits et al. investigated the effect 
of experimentally induced acute renal failure 
(ARF) on neuronal cell activation by immunohis-
tochemistry for Fos and Fra-2 in the rat brain, 
and found that central autonomic cell groups, 
especially visceral sensory cell groups in the 
brain, which are in primary, secondary or ter-
tiary connections with renal afferents, were 
activated in response to ARF [9]. 

Most information about deep brain stimulation-
induced renal diseases has been derived from 
clinical reports. Guimaraes et al. reported acute 
renal failure in patients with bilateral deep brain 
stimulation to subthalamic nucleus (Figure 1) 
[10], and indicated that effect of deep brain 
stimulation- subthalamic nucleus (DBS-STN) in 
hypothalamic centers remained a valid hypoth-
esis which could explain an altered kidney func-
tion immediately after DBS-STN [11]. The study 
of Aviles-Olmos et al. showed the urinary incon-
tinence following deep brain stimulation of the 
pedunculopontine tegmental nucleus (PPTg) 
(Figure 1) [12], and stated that a possible expla-
nation for the detrusor overactivity that devel-
oped immediately after right PPTg DBS is the 
proximity between the caudal PPTg and brain-
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stem structures, which is implicated in the con-
trol of micturition. Fritsche et al. reported acute 
urinary retention in two patients after subtha-
lamic nucleus deep brain stimulation for the 
treatment of advanced Parkinson’s disease 
[13], and its possible mechanism was that STN-
DBS influenced the integration of renal and 
afferent bladder information within the basal 
ganglia circuits [14]. 

Otherwise, Larkin TM et al. also reported a 
case of acute renal failure in a patient with 
failed back surgery syndrome and hypertension 
following a trial of spinal T9 stimulation (Figure 
1) [15], and they postulated that the decreased 
sympathetic input induced by spinal cord stim-
ulation could potentially lead to diminished 
renal blood flow via several mechanisms includ-
ing peripheral vasodilatory effects, decreased 
renal perfusion pressure, and an attenuated 
cardiovascular response to the ensuing hypo-
tension, and resulted in acute renal failure [16]. 

On the basis of above consideration, we indi-
cated that understanding of the mechanisms 
of deep brain stimulation is urgently needed to 
clarify their role in the management of renal 
diseases and to aid the development of new, 
safer therapies.

Kidney and neural circuits in spinal cord

It is widely acknowledged that renal sympathet-
ic innervations have an important role in the 
regulation of hydroelectrolytic and acid-base 
balance, reabsorption of small solutes and hor-
mone production, and the maintenance of fluid 
homeostasis and renal hemodynamics [6, 17, 
18]. Most information about the renal sympa-
thetic preganglionic neurons (second order 
neurons) within the spinal cord has been 
derived from animal models (e.g. the mouse, 
rat, cat and rabbit) used in pseudorabies virus 
tracing research [1, 3, 6]. Developments in ret-
rograde tracing technique research over the 

Figure 1. Schematic drawing sh- 
owed that deep brain or spinal cord 
stimulation might induce renal dis-
eases. Deep brain stimulation for 
STN (shown in Brown) may induce 
acute renal failure via acting hypo-
thalamic center. Deep brain stimu-
lation for the PPTg (shown in Blue) 
may induce urinary incontinence. 
Spinal cord stimulation for thoracic 
9 segment (shown in Green) may 
induce acute renal failure via sym-
pathetic innervation of the kidneys. 
IML, the intermediolateral cell col-
umn of spinal cord; PPTg, peduncu-
lopontine tegmental nucleus; STN, 
subthalamic nucleus.
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past 2 decades have given us remarkable 
insight to characterize neuroanatomic circuits 
from spinal cord to the kidney [1, 6, 19]. We 
investigated spinal cord connections with the 
kidney by identifying sympathetic preganglionic 
neurons through the retrograde trans-synaptic 
transport of pseudorabies virus (PRV)-614 
inoculated into the left kidney in combination 
with epifluorescence immunohistochemistry, 
and our data showed that the vast majority of 
spinal neurons infected by PRV-614 from the 
left kidney expressed red reporters (Figure 2), 
and neurons that participated sympathetic 
neural regulation of the kidney existed in ipsi-
lateral spinal regions but were mainly located in 
the intermediolateral cell column (IML) of ipsi-
lateral spinal T9 segment (Figure 2) [3]. 

Several studies have indicated the spinal label-
ing after PRV injection into the kidney by viral 
transneuronal tracing using isogenic recombi-
nant strains (PRV-BaBlu, PRV-614 and PRV-
152). Weiss, et al. reported that infected neu-
rons were detected within laminae I and II of 
the dorsal horn of the caudal thoracic and 
upper lumbar spinal cord segments after four 
days PRV injection into the kidney, and the 
labeling patterns in the spinal cord are consis-
tent with previous work, indicating the location 
of renal sympathetic sensory pathways [20]. 
The study of Zermann et al. reported that injec-
tion of PRV-Bartha into the rat kidney resulted 
in retrograde infection of neurons in the IML at 
the T6 to T13 spinal cord regions, and most 
PRV-positive neurons were found in T10 [6], 

Figure 2. Renal cell groups target MC4R-GFP positive neurons of the STN, spinal cord and PPTg. Injection of PRV-614 
into the kidney resulted in retrograde infection of neurons in the IML (B2), PPTg (C2) and STN (A2) by sympathetic 
pathway. PRV-614/MC4R-GFP dual-labeled neurons were detected in the IML (B3), PPTg (C3) and STN (A3). (A1, B1, 
C1) showed MC4R-GFP-positive cells; (A2, B2, C2) showed PRV-614-labeled cells; and (A3, B3, C3) showed overlaid 
images of (A1, B1, C1) plus (A2, B2, C2). IML, the intermediolateral cell column of spinal cord; PPTg, pedunculopon-
tine tegmental nucleus; STN, subthalamic nucleus. Arrows indicate double-labeled neurons. Some drawings were 
taken from Hong-Bing Xiang (Movement Disorders, 2013; Pain Physician, 2013).
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whereas the findings of Ye et al. suggested that 
PRV-614 labeled neurons in IML of ipsilateral 
spinal cord segments T4 to L1, and most PRV-
614-infected cells were found in T9 [3]. The dif-
ferences of these data are probably due to the 
species changes of PRV or animal. The results 
from Ye et al. [3] were also consistent with the 
prior immunocytochemical localization of viral 
reporter proteins that PRV-152 infection was 
restricted to the spinal IML of T3-T12 at differ-
ent postinoculation times after PRV-152 injec-
tion into the rat kidney [1]. It is a strikingly 
attractive that the spinal IML included sympa-
thetic preganglionic neurons and related inter-
neurons, which are implicated in balance of 
excitatory and inhibitory influences to the kid-
ney [4, 21]. A considerable amount of literature 
had demonstrated that neurons in IML display 
the intrinsic autorhythmicity and spontaneous 
discharge [22], and their neuronal activity and 
neural network strongly correlate with sympa-
thetic activity [23], and the IML [1, 6, 24] and 
sympathetic nervous system played an impor-
tant role in the regulation of the kidney [25, 26]. 
The study of Cano et al. using an anatomical 
symmetrical system expanded on current 
understanding of the neural control of renal 
function, which was exerted by the central ner-
vous system via sympathetic innervations of 
the kidneys [1]. Collectively, these data further 
suggested that the spinal IML neuronal circuits 
strongly implicated in the regulation of renal 
functions. 

It is reported that spinal melanocortinergic 
pathways have an important in the control of 
the kidney. A considerable amount of literature 
has demonstrated that the melanocortin-4 
receptor (MC4R) is expressed in numerous spi-
nal cord regions known for their implication in 
sympathetic signaling [27, 28]. Xiang et al. 
reported that there existed MC4R-green fluo-
rescent protein (GFP) positive neurons in the 
IML, the intercalates nucleus (IC), and the cen-
tral autonomic nucleus (CAN) of ipsilateral spi-
nal cord by using adult male transgenic mouse 
line expressing green fluorescent protein (GFP) 
under the control of the MC4R promoter [16]. 
After injections of PRV-614 into the kidney, 
PRV-614/MC4R-GFP dual labeled neurons 
were detected in the IML and IC of ipsilateral 
spinal cord, and most PRV-614/MC4R-GFP 
labeled cells were found in the T9 segment 
(Figure 2) [16], suggesting that the spinal T9 
PRV-614/MC4R-GFP neuronal circuits involved 

in the regulation of renal functions. Some 
reports had demonstrated that the IML [1, 6, 
24] and sympathetic nervous system played an 
important role in the regulation of the kidney 
[25, 26]. Cano et al had reported that the cen-
tral circuitry involved in the innervations of both 
kidneys was characterized in individual rats by 
dual viral transneuronal tracing, and the neural 
control of renal function was exerted by the 
central nervous system via sympathetic inner-
vations of the kidneys by using an anatomical 
symmetrical system [1]. Otherwise, a growing 
body of literature supports that sympathetic 
nervous system activity are tightly intercon-
nected via central melanocortinergic circuits 
involving the MC4R [29-32]. Collectively, these 
studies further indicate that the MC4R-
expressing neurons of spinal IML may influence 
renal function.

Kidney and neural circuits in brain

The last decade has witnessed the identifica-
tion of neural circuits from the brain to the kid-
ney. The understanding of central innervations 
and neuronal connections is important for 
studying renal physiology, the consequences of 
renal disease and neurosurgical interventions 
compromising renal nerves [6]. Previous stud-
ies have proved that PRV has become a very 
powerful tool for studying multisynaptic neuro-
nal connections, due to its ability to function as 
a self-replicating marker and to propagate 
exclusively between connected neurons by 
transneuronal transfer, which is strictly time-
dependent, and the high and specific value of 
PRV tracing for describing neuroanatomical 
pathways to study central neural networks [33-
38], including the central control of the kidney 
[1, 6, 19, 37, 39-41]. The study by Zermann et 
al indicated that at the supraspinal level PRV-
positive cells were found within certain brain 
regions, namely the nuclei raphes, rostral ven-
tromedial and ventrolateral medulla, A5 norad-
renergic cell region, locus coeruleus and nucle-
us paraventricularis of the hypothalamus 120 
hours after PRV injection into the left kidney 
[6]. Weiss et al reported that infected neurons 
were found in the nucleus tractus solitaries 
(NTS) five days after PRV injection into the kid-
ney, suggesting that renal afferents travel in 
sympathetic and parasympathetic nerves and 
that this information may converge at the NTS 
[20]. 
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Central melanocortinergic circuits have an 
important in the control of the kidney [42-49]. 
The melanocortin-4 receptor (MC4R) is an 
important regulator of energy homeostasis, 
and evidence suggests that MC4Rs are broadly 
expressed in the central nervous system, 
including many regions classically associated 
with the autonomic nervous system, e.g. the 
nuclei raphes, rostral ventromedial and ventro-
lateral medulla, and nucleus paraventricularis 
of the hypothalamus [27, 29, 50]. The study by 
Rahmouni et al expanded on current under-
standing of the physiologic role for the MC4R in 
the regulation of renal sympathetic traffic [51]. 
Using the heterozygous and homozygous MC4R 
knock-out mice, they found that the RSNA 
response to MC-3/4R agonist (MTII) was atten-
uated and abolished, respectively. Haynes et al 
reported that intracerebroventricular (ICV) 
administration of the MC-3/4R antagonist 
SHU9119 blocked the sympathoexcitatory 
effects of leptin to the rat kidney but not to 
brown adipose tissue, suggesting that the 
effects of leptin on renal sympathetic nerve 
activity (RSNA) are mediated by the melanocor-
tin receptors [52]. Rahmouni et al reported that 
ICV administration of leptin and MC-3/4R ago-
nist (MTII) caused a significant and dose-
dependent increase in RSNA in mice, and the 
sympathoexcitatory effects of melanocortin 
system stimulation are attenuated in the 
absence of leptin receptors, demonstrating an 
important role for the MC4R in the regulation of 
renal sympathetic nerve outflow [51]. Taken 
together, these results demonstrated a poten-
tial for the central melanocortin system in ele-
vating sympathetic outflow in some renal 
diseases.

It is known that renal nerves are crosstalk 
focus between the CNS and the kidney. We had 
provided morphological and neuroanatomical 
evidence of the neural circuitry between brain 
and kidney, and characterized projections from 
the brain to the kidney in the melanocortin-4 
receptor-green fluorescence protein (MC4R-
GFP) knock-in mouse, in which GFP is con-
firmed to be a good indicator of MC4R positive 
neurons, by using retrograde tracing tech-
niques of PRV-614, expressing a novel mono-
meric red fluorescent protein (mRFP1) under 
control of the cytomegalovirus immediate early 
promoter, for direct visualization under fluores-
cence microscope [35-38, 53]. We found that 

injections of PRV-614 into the kidney resulted 
in retrograde infection of neurons in the pedun-
culopontine tegmental nucleus (PPTg) and sub-
thalamic nucleus (STN), and these results pro-
vided direct neuroanatomical evidence that 
supports the presence of autonomic projec-
tions from the PPTg and STN to the kidney, 
which were in agreement with a previous immu-
nohistochemical study in which a subset of 
neurons in the PPTg, that are involved in the 
regulation of sympathetic outflow to kidney, 
was of catecholaminergic or serotonergic 
nature [8]. It was strikingly attractive that PRV-
614/MC4R-GFP dual-labeled neurons were 
detected in the STN, which were in line with a 
previous immunohistochemical study [54]. 
Therefore, it was presumed that possible mech-
anism of the STN stimulation-induced acute 
renal failure involved melanocortinergic signals 
in STN [11]. The report by Liu et al indicated 
that injections of PRV-614 into the kidney 
resulted in retrograde infection of neurons in 
the middle PPTg (mPPTg) and caudal PPTg 
(cPPTg), and PRV-614/MC4R double-labeled 
neurons were detected in the mPPTg and the 
cPPTg [42]. Such a role is supported by previ-
ous findings in which the PPTg exhibited moder-
ate levels of GFP immunoreactivity using a 
mouse line in which GFP is expressed under 
control of MC4R gene promoter [29]. Recently, 
some studies have suggested that the PPTg 
may be divided into the dissipated parts (dp) 
and compact parts (cp) of the PPTg [42, 55, 56]. 
We also found that injection of PRV-614 into 
the kidney resulted in retrograde infection of 
neurons in the dpPPTg (Figure 2), and PRV-
614/TPH and PRV-614/TH dual-labeled neu-
rons were detected in the dpPPTg. In contrast 
to the dpPPTg, we did not detect dual-labeled 
neurons in the cpPPTg. These data also provid-
ed a better understanding of the PPTg and STN 
neural circuits innervating renal tissues, clearly 
demonstrating the rodent PPTg and STN regions 
that contain MC4R, and belonging to the 
descending pathways that involve in the control 
of the kidney. Altogether, these data may help 
provide further rationale for the potential devel-
opment of MC4R agonists for the treatment of 
some renal diseases.

Conclusion

Findings from recently published data in clinical 
studies during deep brain stimulation have 
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established that there is a close interaction 
between the renal disease and neural circuits 
in brain. Improved knowledge about neural reg-
ulation to the kidney opens new prospects for 
the potential use of deep brain stimulation. 
Further studies should be undertaken to eluci-
date the nature of deep brain stimulation so 
that we may more effectively apply deep brain 
neurostimulation to avoid these special compli-
cations related to kidney.
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