Original Article

Arthroscopic surgery plus intra-articular sodium hyaluronate affects meniscus injury

Junqin Qiu*, Jinglai Xue*, Ren Lin, Wei Lin

Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian Province, China. * Equal contributors.

Received December 11, 2019; Accepted January 8, 2020; Epub April 15, 2020; Published April 30, 2020

Abstract: Objective: To investigate the clinical effects of arthroscopic surgery combined with intra-articular sodium hyaluronate injection for meniscus injury. Methods: A total of 130 patients with meniscus injury were assigned into two groups. The control group (n=65) underwent arthroscopic surgery, while the observation group (n=65) underwent arthroscopic surgery combined with intra-articular sodium hyaluronate injection. Results: After surgery, the ability of knee function, pain, and quality of life were observed. The Lysholm score of the observation group was significantly higher than that of the control group at 2, 3, 4, and 5 weeks after surgery (all P<0.05). The visual analogue scale score of the observation group was significantly lower than that of the control group at 4 and 8 weeks after surgery (both P<0.05). The total effective rate in the observation group was 98.46%, which was significantly higher than 89.23% in the control group (P<0.05). Additionally, the 5 scores in the Quality of Life Questionnaire-C30 were all significantly lower in the observation group than in the control group at 6 months after surgery (all P<0.05). Conclusion: Arthroscopic surgery and intra-articular sodium hyaluronate injection for patients with meniscus injury can effectively improve the knee function, relieve pain, elevate the efficacy, and benefit quality of life.

Keywords: Meniscus injury, arthroscopy, sodium hyaluronate injection, knee function, quality of life

Introduction

Meniscus injury, commonly seen in clinic, can be caused by trauma or joint degeneration [1-3]. Meniscus injury caused by severe trauma is usually accompanied by soft tissue injury in the knee such as the cruciate ligament and cartilage, which is very likely to cause swelling [4, 5]. Meniscus injury mainly leads to localized pain in the knee joint and affects the quality of life of the patient. At present, the general treatment for meniscus injury in clinic is meniscus resection [6-8]. However, simple meniscus resection does not retain the undamaged meniscus, but changes the stress distribution of the knee joint, and eventually leads to degeneration of the knee joint, which increases the incidence of osteoarthritis [9, 10]. In contrast, the preservation of the undamaged meniscus is conducive to postoperative recovery by improving the stability of the joint [11]. Arthroscopic surgery can preserve the undamaged meniscus, but the clinical efficacy is quite varied. Intra-articular injection of sodium hyaluronate is a promising conservative treatment method [12-14]. However, sodium hyaluronate injection is currently only used to improve joint function in patients with no obvious meniscus injury. There is no previous study confirming the effect of sodium hyaluronate injection under arthroscopy. Therefore, this study included 130 patients with meniscus injury to explore the efficacy of the combination, hoping for better results than simple arthroscopic surgery.

Materials and methods

General data

A total of 130 patients with meniscus injury admitted to Fuzhou Second Hospital Affiliated to Xiamen University from January 2017 to February 2018 were enrolled in this study. A randomized digital table method was used for grouping, with 65 patients in each group. In the observation group, there were 39 males and 26 females, aged 32 to 76 years, with an...
Arthroscopic surgery plus sodium hyaluronate injection

average age of (54.4±0.3) years. In the control group, there were 37 males and 28 females, aged 33 to 76 years, with an average age of (54.7±0.5) years. Informed consent was obtained from all participants in the study, and the Medical Ethics Committee of Fuzhou Second Hospital Affiliated with Xiamen University’s ethics committee approved the study.

Patients were eligible if they were diagnosed with meniscus injury caused by trauma, which was in need of clearing of the joint cavity by arthroscopy and partial meniscectomy; patients who did not receive prior surgical treatment or drug therapy within two weeks; patients having ASA grade I-II; patients who were willing to receive surgery and drug injection; and patients who behaved favorable with compliance. Patients were excluded if they had coagulopathy or severe organ function impairment; patients who did not meet the inclusion criteria; or who were allergic to drugs injected.

Methods

The meniscus injury of all patients was observed, as shown in Figure 1. Figure 1A shows the meniscus injury under arthroscope. Figure 1B and 1C are the internal and external meniscus injuries presented by Magnetic Resonance Imaging.

The control group was treated with arthroscopy alone. First, continuous epidural anesthesia was performed after the patient was instructed to be in a supine position. Second, the arthroscope was inserted from the anterolateral and anteromedial side of the knee with the help of balloon tourniquet. Third, the synovial tissue, free body, etc. in the joint were cleared to clarify the meniscus injury. If the meniscus injury was small, the undamaged meniscus was retained; if the injury was large, the meniscus was completely removed. Lastly, the incision was sutured and pressure bandaged.

The observation group was treated with arthroscopic surgery combined with intra-articular injection of sodium hyaluronate. Before the end of the conventional arthroscopic surgery, 2 mL of sodium hyaluronate (Matsumoto Chemical, Japan) was administered to the knee (first injection), and the specification was 2 mL: 20 mg. After the first injection, each patient was given 2 mL of sodium hyaluronate each week for 8 weeks. The patient was notified to come to the hospital 1-2 days before each dose. After treatment, the patient was called at each follow-up time point to answer questionnaires, and was asked whether there were side effects such as joint stiffness or abnormal pain.

Outcome measures

The main outcome measures were knee function (Lysholm) and visual analogue scale (VAS) scores. The Lysholm score was evaluated before surgery and 2, 3, 4, and 5 weeks after surgery. Higher score indicates better knee function, with a total score of 100 points. VAS score was evaluated before surgery as well as 4 and 8 weeks after surgery. Higher score indicates more severe pain, with a total score of 10 points.

The secondary measures included quality of life and clinical efficacy. Five scores in the qual-
Table 1. Comparison of general data

<table>
<thead>
<tr>
<th>Group/item</th>
<th>Age (year)</th>
<th>Sex</th>
<th>Injured knee</th>
<th>Operation time (min)</th>
<th>Blood loss (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Male</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Left</td>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Observation group</td>
<td>54.4±0.3</td>
<td>39</td>
<td>26</td>
<td>32</td>
<td>68.5±9.4</td>
</tr>
<tr>
<td>Control group</td>
<td>54.7±0.5</td>
<td>37</td>
<td>28</td>
<td>36</td>
<td>71.3±7.2</td>
</tr>
<tr>
<td>t value</td>
<td>5.674</td>
<td>4.867</td>
<td>5.236</td>
<td>6.474</td>
<td>7.357</td>
</tr>
<tr>
<td>P value</td>
<td>0.468</td>
<td>0.625</td>
<td>0.521</td>
<td>0.415</td>
<td>0.381</td>
</tr>
</tbody>
</table>

Compared with before surgery, *P<0.05, **P<0.01, ***P<0.001; compared with 2 weeks after surgery, *P<0.05; compared with 3 weeks after surgery, *P<0.05; compared with 4 weeks after surgery, *P<0.05.

Table 2. Comparison of Lysholm scores (± sd)

<table>
<thead>
<tr>
<th>Group</th>
<th>Cases</th>
<th>Before surgery</th>
<th>2 weeks after surgery</th>
<th>3 weeks after surgery</th>
<th>4 weeks after surgery</th>
<th>5 weeks after surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation group</td>
<td>65</td>
<td>54.45±4.75</td>
<td>69.35±5.27</td>
<td>76.54±5.64*</td>
<td>83.38±5.37**</td>
<td>90.57±3.69**</td>
</tr>
<tr>
<td>Control group</td>
<td>65</td>
<td>55.34±5.26</td>
<td>60.53±5.41*</td>
<td>67.52±5.29**</td>
<td>74.56±5.34***</td>
<td>80.25±5.69***</td>
</tr>
<tr>
<td>P value</td>
<td>0.265</td>
<td>0.048</td>
<td>0.049</td>
<td>0.028</td>
<td>0.015</td>
<td></td>
</tr>
</tbody>
</table>

Compared with before surgery, *P<0.05, **P<0.01, ***P<0.001; compared with 2 weeks after surgery, *P<0.05; compared with 3 weeks after surgery, *P<0.05; compared with 4 weeks after surgery, *P<0.05.

Statistical analyses

SPSS 19.0 statistical software was used to process the data. The measurement data were presented as mean ± standard deviation (± sd), and compared by independent sample t test. Data at multiple time points were tested by repeated measurement analysis of variance combined with Bonferroni’s post hoc. The counted data were presented as percentage, and compared by chi-square test. P<0.05 indicated a statistically significant difference.

Results

Comparison of general data

There were 39 males and 26 females in the observation group, with an average age of (54.4±0.3) years old, while there were 37 males and 28 females in the control group, with an average age of (54.7±0.5) years old. There were no significant differences between the two groups in terms of age, sex, injury, operation time and intraoperative blood loss (all P>0.05). See Table 1.

Comparison of Lysholm scores

There was no significant difference in preoperative Lysholm scores between the observation group and the control group (P>0.05), while the score was significantly higher in the observation group than in the control group at 2, 3, 4, and 5 weeks after surgery, with statistically significant differences (all P<0.05). See Table 2 and Figure 2.

Comparison of VAS scores

There was no significant difference in preoperative VAS scores between the observation group and the control group (P>0.05), while the score was significantly lower in the observation group than in the control group at 4, and 8 weeks after surgery, with statistically significant differences (both P<0.05). See Table 3.

Comparison of efficacy

The total effective rate of the observation group (98.46%) was significantly higher than that of the control group (89.23%), with a statistically significant difference (P<0.05). See Table 4.
Arthroscopic surgery plus sodium hyaluronate injection

Figure 2. Comparison of Lysholm scores. Compared with observation group *P<0.05; compared with before surgery, *P<0.05, **P<0.01, ***P<0.001; compared with 2 weeks after surgery, #P<0.05; compared with 3 weeks after surgery, #P<0.05; compared with 4 weeks after surgery, #P<0.05.

Comparison of the 5 scores in the QLQ-c30 scale

The 5 scores in the QLQ-c30 scale were significantly lower in the observation group than in the control group at 6 months after operation, with statistically significant differences (all P<0.05). See Table 5 and Figure 3.

Discussion

This study investigated the value of arthroscopic surgery combined with sodium hyaluronate injection for the treatment of meniscus injury, and found that the above treatment can improve the knee function and pain in patients. In general, patients with meniscus injury have significant impairments in knee function and are suffering from varying degrees of pain [15, 16]. Therefore, evaluation of different treatment methods for meniscus injury can be carried out from the aspects of knee function and pain score after treatment. Study confirmed that arthroscopic surgery is better than traditional knee surgery in relieving pain and in accelerating postoperative recovery [17]. However, arthroscopic surgery may result in joint instability after surgery. Sodium hyaluronate injection, which plays a crucial role in the conservative treatment for knee injury, can improve joint stability [18, 19]. Sodium hyaluronate injection can only relieve symptoms but cannot cure the underlying injury. Therefore, the combination of the two is of great significance. Repeated measures analysis of variance in this study showed that the Lysholm scores of the two groups were different. To be specific, the scores were higher in the observation group than in the control group at 2, 3, 4, and 5 weeks after surgery. Moreover, the Lysholm score of the observation group showed time dependence: score at 3, 4, and 5 weeks after surgery were higher than that of the previous week, respectively; while the control group showed no significant difference in scores between 4 weeks and 5 weeks after surgery. It can be confirmed that after surgery, the knee joint function in the observation group was improved better and faster than that in the control group. Besides, the VAS scores of the observation group were significantly lower than those of the control group at 4 and 8 weeks after surgery, indicating that the degree of pain in the observation group was significantly lower than that of the control group. The reason could be the additional injection of sodium hyaluronate in the observation group. Sodium hyaluronate injection is a hyaluronic acid and a mucopolysaccharide. Therefore, injecting it into the joint cavity is conducive to the recovery of joint function.

The application of arthroscopic surgery combined with sodium hyaluronate injection can fully improve the treatment efficacy and the quality of life. The direct view of sodium hyaluronate injection under arthroscope in the observation group is better than indirect view, which may affect the injection into the lesions of the joint cavity, resulting in inferior efficacy [20, 21]. Injection of sodium hyaluronate into the joint cavity can supplement the endogenous hyaluronic acid deficiency in the joints, improve the nutrition of the joints, lubricate the joints, repair the damaged cartilage, improve the physical and chemical properties of the joints, expand the range of joint activity, and relieve pain. During the arthroscopic surgery, attention should be paid to avoid the narrowing of the joint space, so skilled surgeons are necessary. Compared with the control group, the treatment method in the observation group was safer and harmed less of the articular cartilage, showing a remarkable efficacy.
Arthroscopic surgery plus sodium hyaluronate injection

Table 3. Comparison of VAS scores (\(\bar{x} \pm sd\))

<table>
<thead>
<tr>
<th>Group</th>
<th>Cases</th>
<th>VAS score Before surgery</th>
<th>4 weeks after surgery</th>
<th>8 weeks after surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation group</td>
<td>65</td>
<td>8.65±0.77</td>
<td>5.33±0.85**</td>
<td>2.34±0.26***#</td>
</tr>
<tr>
<td>Control group</td>
<td>65</td>
<td>8.41±0.62</td>
<td>7.35±0.27*</td>
<td>5.84±0.37**</td>
</tr>
<tr>
<td>(P) value</td>
<td></td>
<td>0.525</td>
<td>0.029</td>
<td>0.036</td>
</tr>
</tbody>
</table>

Compared with before surgery, *P<0.05, **P<0.01, ***P<0.001; compared with 4 weeks after surgery, *P<0.05. VAS: visual analogue scale.

Table 4. Comparison of efficacy (n, %)

<table>
<thead>
<tr>
<th>Group</th>
<th>Cases</th>
<th>Markedly effective</th>
<th>Effective</th>
<th>Ineffective</th>
<th>Effective rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation group</td>
<td>65</td>
<td>58 (89.23)</td>
<td>6 (9.23)</td>
<td>1 (1.54)</td>
<td>64 (98.46)</td>
</tr>
<tr>
<td>Control group</td>
<td>65</td>
<td>55 (84.62)</td>
<td>3 (4.62)</td>
<td>7 (10.77)</td>
<td>58 (89.23)</td>
</tr>
<tr>
<td>(\chi^2)</td>
<td></td>
<td>0.609</td>
<td>1.074</td>
<td>4.795</td>
<td>4.795</td>
</tr>
<tr>
<td>(P) value</td>
<td></td>
<td>0.435</td>
<td>0.300</td>
<td>0.029</td>
<td>0.029</td>
</tr>
</tbody>
</table>

Table 5. Comparison of the 5 scores in the QLQ-c30 scale (\(\bar{x} \pm sd\))

<table>
<thead>
<tr>
<th>Group</th>
<th>Cases</th>
<th>Trouble sleeping</th>
<th>Tension</th>
<th>Irritability</th>
<th>Trouble doing strenuous activities</th>
<th>Fatigue</th>
<th>Total score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation group</td>
<td>65</td>
<td>1.25±0.32</td>
<td>1.38±0.15</td>
<td>1.54±0.24</td>
<td>1.13±0.19</td>
<td>1.34±0.25</td>
<td>5.30±0.90</td>
</tr>
<tr>
<td>Control group</td>
<td>65</td>
<td>3.05±0.24</td>
<td>3.12±0.16</td>
<td>3.21±0.17</td>
<td>3.08±0.38</td>
<td>3.17±0.24</td>
<td>12.46±1.19</td>
</tr>
<tr>
<td>(T) value</td>
<td></td>
<td>6.824</td>
<td>8.649</td>
<td>7.639</td>
<td>9.538</td>
<td>8.485</td>
<td>11.537</td>
</tr>
<tr>
<td>(P) value</td>
<td></td>
<td>0.037</td>
<td>0.012</td>
<td>0.024</td>
<td>0.002</td>
<td>0.016</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Note: QLQ-c30: quality of life questionnaire-c30.

The 8-week follow up in this study can only prove a short-term efficacy of the combination method than arthroscopic surgery alone. Further study is needed to investigate the long-term treatment effect, such as whether the efficacy is different after half a year. In summary, the combination of arthroscopic surgery and sodium hyaluronate injection for meniscus injury can effectively improve knee function, relieve pain, improve sleep quality and tension, and elevate the overall treatment efficacy.

Disclosure of conflict of interest

None.

Address correspondence to: Wei Lin, Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, No. 47 Shangteng Road, Cangshan District, Fuzhou 350007, Fujian Province, China. Tel: +86-0591-22169106; Fax: +86-0591-22169106; E-mail: linwei77kk@163.com
Arthroscopic surgery plus sodium hyaluronate injection

References

