Original Article

Chinese patients carrying two CYP2C19 LOFs have a more active state of P2Y$_{12}$-G$_{i}$ signaling and larger MPV in post-clopidogrel platelets with acute coronary syndrome

Huajie Xu1*, Hongyi Wu1*, Xin Zhao1, Yan Zhang2, She Chen2, Bing Fan1, Si Zhang2

1Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, P. R. China; 2Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, P. R. China.

*Equal contributors.

Received October 10, 2018; Accepted March 13, 2019; Epub July 15, 2019; Published July 30, 2019

Abstract: Clopidogrel is the most widely used P2Y$_{12}$-inhibitor in Chinese patients with acute coronary syndrome (ACS). It was previously found that carriers with two CYP2C19 loss-of-function (LOF) alleles, but not one LOF allele, had poorer clinical outcomes. The current study further determined the link between CYP2C19 genotype status and clopidogrel response, using P2Y$_{12}$-G$_{i}$ dependent signaling endpoints and mean platelet volume (MPV). A total of 196 patients with ACS were included. CYP2C19 variant alleles were detected by gene sequencing. Platelet reactivity was assessed using thrombelastographs at 24 hours after 300 mg clopidogrel loading. P2Y$_{12}$-G$_{i}$ signaling was simultaneously measured using flow cytometric analysis of vasodilator-stimulated phosphoprotein phosphorylation-platelet reactivity (VASP-PRI) and Akt phosphorylation (P-Akt) indexes. Measurements of hematological parameters were carried out before and after one month of treatment with 75 mg clopidogrel. It was found that increases in VASP-PRI positively correlated with the number of LOF, significantly. However, only two LOF carriers showed a higher P-Akt index after clopidogrel treatment. VASP-PRI was positively associated with platelet aggregation (R = 0.661, \(P < 0.001 \)), but not with P-Akt index. MPV was larger in patients with two LOFs after clopidogrel treatment. Results indicate that only two CYP2C19 LOF carriers had a more active state of P2Y$_{12}$-G$_{i}$ signaling and larger MPV in post-clopidogrel platelets.

Keywords: CYP2C19, clopidogrel, P2Y$_{12}$, VASP, Akt, MPV

Introduction

Dual antiplatelet therapy has become the cornerstone of medical treatment in patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI) [1]. Although more potent platelet P2Y$_{12}$-inhibitors (prasugrel or ticagrelor) have been developed to further reduce ischemic events when added to aspirin therapy, increased risks of severe bleeding have been shown and few East Asian patients have been included in trials [2, 3]. Furthermore, the availability of ticagrelor has been restricted to public medical insurance. Thus, clopidogrel is still the most widely used in patients with ACS in China [4]. Clopidogrel is an inactive pro-drug that requires hepatic metabolism by cytochrome P450 to generate its active thiol metabolite, targeting and irreversibly inhibiting platelet ADP P2Y$_{12}$ receptors [5]. Insufficient P2Y$_{12}$ inhibition of clopidogrel is the most important concern in clinical practice.

Increasing evidence has demonstrated an association between CYP2C19 polymorphisms and clopidogrel responsiveness [6]. However, there are considerable ethnic differences in distribution patterns and effects of CYP2C19 LOF alleles. It should be noted that more than half of East Asians carry at least one CYP2C19 LOF allele [7]. Although East Asians have a markedly higher prevalence over Westerners,
no evidence has been found that East Asians have worse response to clopidogrel than Westerners. Concerning whites with ACS, carriage of one or two CYP2C19 LOF alleles may increase the risk of ischemic events during therapy with clopidogrel [8]. In contrast, in East Asians, the current study reported that only carriers with two CYP2C19 LOF alleles, but not one LOF allele, have poor clinical outcomes after clopidogrel treatment [9, 10]. It should be defined which genotype with CYP2C19 LOF allele is more likely to substantively influence clopidogrel responsiveness in Chinese patients.

Theoretically, platelet P2Y_{12}-G_{i} signaling pathway assessment is a more special endpoint of clopidogrel effectiveness. The P2Y_{12} receptor is coupled to G_{i} proteins [11]. Binding of ADP to the P2Y_{12} receptor liberates G_{i} protein subunits α_{i} and β_{i}, resulting in the amplification and stabilization of platelet aggregation. The α_{i} subunit leads to inhibition of adenylyl cyclase (AC), reducing cyclic adenosine monophosphate (cAMP) levels. This, in turn, diminishes cAMP-mediated phosphorylation of vasodilator-stimulated phosphoprotein (VASP) [12]. The β_{i} subunit activates phosphatidylinositol 3-kinase (PI3K) through activation of a serine-threonine protein kinase B (PKB) [12]. These complex series of intracellular signaling events, including the phosphorylation of VASP and Akt, compose P2Y_{12}-G_{i} signaling pathways. To the best of our knowledge, in this study, two G_{i}-dependent events in post-clopidogrel platelets, including VASP and Akt, were simultaneously evaluated for the first time.

Mean platelet volume (MPV) is a routine measurement of platelet size. It has been proposed as a marker of platelet activity, as larger platelets are metabolically and enzymatically more active than normal-sized platelets, displaying greater prothrombotic potential than smaller ones [13]. The current study evaluated the effects of CYP2C19 variant alleles on these two G_{i}-dependent events and MPV in post-clopidogrel platelets from Chinese patients with ACS undergoing PCI with drug-eluting stents (DES). The aim was to better explore which CYP2C19 polymorphism is more susceptible to clopidogrel responsiveness.

Materials and methods

Study population

From September 2015 to February 2016, a total of 196 Chinese patients with ACS, under-going PCI with DES, were consecutively enrolled. Patients received a loading dose of 300 mg clopidogrel. This was followed by a daily regimen of 75 mg and a loading dose of 300 mg aspirin, followed by 100 mg daily. Exclusion criteria: Less than 18 years; Upstream or bail-out use of glycoprotein IIb/IIIa; Concomitant administration of cilostazol; Allergies or contra-indications to either aspirin or clopidogrel; Malignancies; Pregnancy; Severe renal dysfunction or hepatic insufficiency; Total platelet count less than 100 × 10⁹/L; Increased risk of bleeding and hematologic disorder [14].

Hematologic routines were measured on admission using XE-5000 an automated hematology analyzer (Sysmex, Kobe, Japan). In these patients, measurements of hematologic routines were carried out on 2 occasions: 1) The first day before treatment with clopidogrel; and 2) One month after PCI, routinely treated with 75 mg clopidogrel.

The study protocol was approved by the Medical Ethics Committee of Zhongshan Hospital. Informed consent was obtained from all patients.

Platelet function

At 24 hours after 300 mg clopidogrel loading, the magnitude of platelet reactivity was assessed using the Thrombelastograph (TEG) Hemostasis Analyzer (Haemoscope Corp, Niles, Illinois, USA). The Food and Drug Administration approved-TEG relies on measurements of activator-induced clot strength, enabling quantitative analysis of platelet function. Briefly, 1 mL of heparinized blood was transferred to a vial containing kaolin, mixed by inversion. Next, 500 µl activated blood was transferred to a vial containing heparinase, mixed to neutralize the heparin. Neutralized blood (360 µl) was immediately added to a heparinase-coated cup and assayed in the TEG analyzer, according to manufacturer instructions, generating the thrombin-induced platelet-fibrin clot, as previously described. Platelet aggregation in response to ADP was calculated with computerized software using this formula: % Aggregation = [(MA_{ADP} − MA_{Fibrin})/(MA_{Thrombin} − MA_{Fibrin})] × 100%.

Genotyping

Genomic DNA was extracted from whole-blood samples using the Qiagen Blood Kit (Qiagen, Hilden, Germany), according to manufacturer recommendations. CYP2C19*2 (rs4244285)
and CYP2C19*3 (rs4986893) polymorphisms were genotyped using the Sanger sequencing method. For CYP2C19*2, a 435 bp DNA fragment containing the polymorphic site was amplified by PCR in the ABI 9600 (Applied Biosystems, Foster City, CA) using the forward primer 5'-CATCTTGTATCTTCTTG-3' and the reverse primer 5'-TGAATCACAATACCGCA-3'. PCR was carried out in a total volume of 30 µl, containing 3 µl 10 × PCR buffer, 0.5 µl 10 µM primer each, 3 µl dNTP, 1.8 µl MgSO$_4$, 0.6 µl KOD-Plus-Neo polymerase (TOYOBO, Life Science Department OSAKA, JAPAN), 3 µl of genomic DNA, and 17.6 µl H$_2$O. PCR cycling parameters were 35 cycles of 30 seconds at 94°C, 55°C for 30 seconds, and 72°C for 45 seconds. Sanger sequencing of purified PCR products of selected samples was performed to confirm the different allelic variants of CYP2C19*2. Other gene polymorphisms were detected in the same way (forward primer 5'-CCAATCATTTAGCTTCAC-3' and the reverse primer 5'-ATATTCAATTTCCTGTGCA-3' for CYP2C19-19*3).

Participants were divided into 3 groups, based on the number of CYP2C19 LOF alleles: 1) No LOF carriers (CYP2C19*1/*1); 2) 1 LOF carrier (CYP2C19*1/*+2 and CYP2C19*1/*+3); and 3) 2 LOF carriers (CYP2C19*2/*2, CYP2C19*2/*+3). No carriers of CYP2C19*3/*3 were found in the present study population.

Flow cytometric analysis of VASP phosphorylation

Flow cytometric analysis of VASP phosphorylation was performed, according to the manufacturer recommendations (Platelet VASP; Diagnostica Stago/Biocytex, Asnie`res, France). Briefly, 10 µl samples of citrate anticoagulated blood were incubated at room temperature for 10 minutes with PGE1 alone or with PGE1 plus ADP (10 µM). Reactions were stopped by the addition of 10 µl of fixation reagent and were fixed for 5 minutes. Subsequently, cell suspensions were permeabilized and immunolabelled for 5 minutes using a VASP phosphorylation specific mouse monoclonal antibody or a negative isotypic control antibody, as well as a CD61 phycoerythrin-labeled platelet specific antibody. Finally, platelets were counterstained with a FITC-conjugated polyclonal anti-mouse IgG antibody for 5 minutes. Diluted samples were analyzed using a Coulter Epics XL-M flow cytometer (Beckman/Coulter, Fullerton, CA, USA). VASP-PRI was calculated using corrected mean fluorescence intensities (MFIs) in the presence of PGE1 alone or PGE1+ADP, using the following calculation: VASP-PRI (%) = [(MFI$_{PGE1}$ - MFI$_{PGE1+ADP}$)/MFI$_{PGE1}$] × 100%, which was shown in Supplementary Figure 2.

Flow cytometric analysis of Akt (Ser473) phosphorylation

Flow cytometric analysis of Akt Ser473 phosphorylation was performed, as described previously, with modification [14]. Briefly, 10 µl samples of citrate anticoagulated blood were diluted in 300 µl phosphate buffer saline (PBS) buffer and stimulated with 10 µM ADP for 5 minutes at 37°C. As a control, 10 µl blood was processed in the same way, but without ADP (resting). Reactions were stopped by the addition of 100 µl of 4% paraformaldehyde solution and were fixed for 2.5 hours. Subsequently, cell suspensions were permeabilized and immunolabeled with FITC-conjugated rabbit anti-Akt Ser473 antibody (abwiz bio, San Diego, CA, USA) and PE-conjugated anti-CD61 (eBioscience, San Diego, CA, USA) for 30 minutes. Cell suspensions were washed with PBS and analyzed using the FACS Calibur flow cytometer (BD Biosciences, San Jose, CA, USA), using dual-color analysis to acquire platelet (CD61)-positive events. P-Akt index was calculated using MFIs of resting and ADP-treated platelets, using the following calculation: P-Akt index (%) = [(MFI$_{ADP}$/MFI$_{ADP}$ + MFI$_{resting}$)/MFI$_{resting}$] × 100%, which was indicated in Supplementary Figure 3.

To validate platelet Akt phosphorylation with Western blotting, washed platelets were stimulated with 10 µM ADP for 5 minutes at 37°C, without stirring. Platelet proteins were analyzed with Western blotting using rabbit monoclonal antibodies against Ser473-phosphorylated Akt (Cell Signaling, Beverly, MA, USA) and total Akt (Cell Signaling, Beverly, MA, USA). As a control, platelets were processed in the same way, but without ADP (resting).

Statistical analyses

Continuous variables are expressed as mean ± standard deviation (SD) and were checked for normal distribution using Kolmogorov-Smirnov tests. Wilcoxon rank sum tests or t-tests for unpaired samples were used to compare any continuous variables with non-normal or normal distribution, respectively. To test for differ-
Table 1. Characteristics of the study population according to CYP2C19 genotype

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>No LOF carrier</th>
<th>1 LOF carrier</th>
<th>2 LOF carrier</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>80</td>
<td>88</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Male (%)</td>
<td>52 (65)</td>
<td>68 (77.3)</td>
<td>20 (71.4)</td>
<td>0.462</td>
</tr>
<tr>
<td>Age (years)</td>
<td>63.2 ± 9.8</td>
<td>64.2 ± 9.3</td>
<td>65.5 ± 11.1</td>
<td>0.738</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>24.8 ± 2.8</td>
<td>24.9 ± 2.2</td>
<td>25.3 ± 2.4</td>
<td>0.826</td>
</tr>
<tr>
<td>Current smoker (%)</td>
<td>24 (30)</td>
<td>26 (29.5)</td>
<td>8 (28.6)</td>
<td>0.802</td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>52 (65)</td>
<td>52 (59.1)</td>
<td>20 (71.4)</td>
<td>0.676</td>
</tr>
<tr>
<td>Dyslipidemia (%)</td>
<td>16 (20)</td>
<td>12 (13.6)</td>
<td>4 (14.3)</td>
<td>0.181</td>
</tr>
<tr>
<td>Diabetes (%)</td>
<td>38 (47.5)</td>
<td>28 (31.8)</td>
<td>8 (28.6)</td>
<td>0.249</td>
</tr>
<tr>
<td>Previous MI (%)</td>
<td>14 (17.5)</td>
<td>16 (18.2)</td>
<td>6 (21.4)</td>
<td>0.947</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>22.2 ± 11.3</td>
<td>26.9 ± 21.7</td>
<td>19.4 ± 8.1</td>
<td>0.237</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>20.3 ± 6.0</td>
<td>21.9 ± 8.9</td>
<td>18.8 ± 5.5</td>
<td>0.353</td>
</tr>
<tr>
<td>ALP (U/L)</td>
<td>65.9 ± 18.0</td>
<td>67.7 ± 15.8</td>
<td>72.4 ± 27.5</td>
<td>0.544</td>
</tr>
<tr>
<td>GGT (U/L)</td>
<td>33.7 ± 17.3</td>
<td>35.2 ± 27.1</td>
<td>31.3 ± 15.4</td>
<td>0.838</td>
</tr>
<tr>
<td>eGFR (ml/min/1.73 m²)</td>
<td>84.1 ± 17.6</td>
<td>83.0 ± 15.4</td>
<td>81.6 ± 22.4</td>
<td>0.9</td>
</tr>
<tr>
<td>Current medication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPI (%)</td>
<td>10 (12.5)</td>
<td>18 (20.5)</td>
<td>4 (14.3)</td>
<td>0.394</td>
</tr>
<tr>
<td>Statin (%)</td>
<td>80 (100)</td>
<td>88 (100)</td>
<td>28 (100)</td>
<td>1</td>
</tr>
<tr>
<td>β-blocker (%)</td>
<td>74 (92.5)</td>
<td>76 (86.4)</td>
<td>26 (92.9)</td>
<td>0.598</td>
</tr>
<tr>
<td>ACEI/ARB (%)</td>
<td>58 (72.5)</td>
<td>54 (61.4)</td>
<td>22 (78.6)</td>
<td>0.37</td>
</tr>
<tr>
<td>Ca-blocker (%)</td>
<td>22 (27.5)</td>
<td>18 (20.5)</td>
<td>5 (17.9)</td>
<td>0.839</td>
</tr>
<tr>
<td>Nitrates (%)</td>
<td>52 (65)</td>
<td>60 (68.2)</td>
<td>19 (67.9)</td>
<td>0.896</td>
</tr>
</tbody>
</table>

Data are expressed mean ± SD or number of patients (percentage). ACEI, angiotensin-converting-enzyme inhibitors; ARB, angiotensin II receptor blockers; ALT, alanine aminotransferases; AST, aspartate transaminase, ALP, alkaline phosphatase; BMI, body mass index; GGT, glutamyltransferase; LOF, loss-of-function; PPI, proton pump inhibitors; Previous MI, previous myocardial infarction; eGFR, estimated glomerular filtration rate.

Results

Baseline characteristics of study participants

Of the 196 ACS patients included in this study, 80 patients (40.8%) were classified as CYP2C19*1/*1, 88 patients (44.9%) were CYP2C19*1/*2 and CYP2C19*1/*3, and 28 patients (14.3%) were CYP2C19*2/*2 and CYP2C19*2/*3. Based on CYP2C19 genotype, patients were categorized into three groups, no LOF carriers (CYP2C19*1/*1), one LOF carriers (CYP2C19*1/*2 and CYP2C19*1/*3), and two LOF carriers (CYP2C19*2/*2 and CYP2C19*2/*3), which can be found in Supplementary Figure 1. No carriers of CYP2C19*3/*3 were found. As shown in Table 1, no significant differences in sex, age, body mass index, and baseline medications existed between the three groups. Likewise, the proportion of patients with hypertension, diabetes mellitus, hypercholesterolemia, current smoking, or previous myocardial infarction differed insignificantly. No significant differences were found in liver function, including alanine aminotransferases (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), and glutamyltransferase (GGT), between these three groups. Renal function of estimated glomerular filtration rates (eGFR) were not significantly different either. Demographic and baseline clinical characteristics are shown in Table 1, as well as procedural variables, suggesting that the three groups had similar baseline characteristics.

Post-clopidogrel platelet reactivity increased according to the numbers of CYP2C19 variant alleles

As shown in Figure 1, mean platelet aggregation after clopidogrel treatment was significant-
CYP2C19 polymorphisms on P2Y12-Gi signaling and MPV

Figure 1. Post-clopidogrel platelet reactivity increased according to the number of CYP2C19 loss-of-function (LOF) alleles. *** as \(P < 0.001 \).

Figure 2. Post-clopidogrel vasodilator-stimulated phosphoprotein-platelet reactivity index (VASP-PRI) increased according to the number of CYP2C19 loss-of-function (LOF) alleles. *** as \(P < 0.001 \).

Post-clopidogrel VASP-PRI was elevated according to the numbers of CYP2C19 variant alleles

As shown in Figure 2, patients with two CYP2C19 LOF alleles had a significantly higher VASP-PRI index than those with one LOF allele (76.7 ± 9.2% vs. 57.4 ± 18.6%, \(P < 0.001 \)) and those with no LOF allele (76.7 ± 9.2% vs. 41.9 ± 21.3%, \(P < 0.001 \)). Moreover, the VASP-PRI index of patients with one LOF allele was higher in patients with no LOF allele (57.4 ± 18.6% vs. 41.9 ± 21.3%, \(P < 0.001 \)). Present data demonstrates that VASP-PRI was elevated depending on the number of CYP2C19 LOF alleles, showing the same significance with platelet aggregation.

Post-clopidogrel P-Akt index was elevated in two CYP2C19 LOF carriers but not in one LOF carriers

Similar to VASP-PRI, patients with two CYP2C19 LOF alleles had a significantly higher P-Akt index than those with 1 LOF allele (59.8 ± 12.4% vs. 49.0 ± 10.6%, \(P < 0.001 \)) and those with no LOF allele (59.8 ± 12.4% vs. 47.2 ± 12.1%, \(P < 0.001 \)) (Figure 3A). However, no significant differences were found in P-Akt indexes between patients with one LOF and patients with no LOF (49.0 ± 10.6% vs. 47.2 ± 12.1%, \(P = 0.701 \)). Results suggest that only carriers with two CYP2C19 LOFs had relatively higher P-Akt indexes.

The P-Akt signal of resting platelets was low in all patients. Upon ADP stimulation, 12 different profiles of response were recorded. Compared to P-Akt indexes measured by flow cytometric, some patients (95/196) failed to display detectable P-Akt. Protein levels of P-Akt could scarcely be distinguished from resting and ADP-stimulated platelets in no and one LOF carriers. In accord with P-Akt indexes by flow cytometry, only two CYP2C19 LOF carriers had higher P-Akt signals after ADP-simulation than resting, according to by Western blotting (Figure 3B). Results suggest that only two CYP2C19 LOF carriers had relatively higher P-Akt indexes.

VASP-PRI did not correlate with P-Akt index in post-clopidogrel platelets

This study further determined correlation levels between signaling events mediated by two \(G_i \) protein subunits \(\alpha_i \) and \(\beta_i \). Pearson's correlation analysis revealed no significant correlation between VASP-PRI and P-Akt index in post-clopidogrel platelets (\(R = 0.126, P = 0.075 \)) (Figure 4A), indicating that these two \(G_i \) protein subunits-dependent events did not strictly correlate to each other in post-clopidogrel patients.
CYP2C19 polymorphisms on P2Y\textsubscript{12}-G\textsubscript{i} signaling and MPV

![Figure 3](image1)

Figure 3. Post-clopidogrel Akt phosphorylation index (P-Akt index) was only elevated in two CYP2C19 LOF carriers. A. Akt phosphorylation index (P-Akt index) was determined by flow cytometry. B. Western blotting analysis of P-Akt levels in resting and ADP-stimulated platelets of random 12 ACS patients including four patients with no LOF allele, four patients with one LOF allele, and four patients with two LOF alleles. *** as $P < 0.001$, ns as no significance.

![Figure 4](image2)

Figure 4. Relationship between post-clopidogrel phosphoprotein-platelet reactivity index (VASP-PRI), Akt phosphorylation index (P-Akt index), and post-clopidogrel platelet aggregation. A. Relationship between VASP-PRI and P-Akt index. B. Relationship between VASP-PRI and post-clopidogrel platelet aggregation.

In contrast, post-clopidogrel VASP-PRI was positively associated with post-clopidogrel platelet aggregation ($R = 0.661$, 95% CI: 0.545-0.777, $P < 0.001$) (Figure 4B). Therefore, no consistent phosphorylation with VASP and Akt occurred in post-clopidogrel platelets. Only two LOF carriers had similarly elevated VASP-PRI and P-Akt indexes, further explaining present results.

MPV was significantly larger in patients with two CYP2C19 LOFs than in patients with one LOF and no LOF after one month of clopidogrel treatment

As shown in Table 2, there were no significant differences in red blood cell (RBC), hemoglobin (Hb), white blood cell (WBC), neutrophil percentages (N%), platelet counts (PLT), platelet large cell ratios (P-LCR), or platelet distribution width (PDW) between no LOF carriers, one LOF carriers, and two LOF carriers. Interestingly, there were significant differences in MPV between these three groups after clopidogrel treatment.

As demonstrated in Figure 5, before clopidogrel treatment, there were no significant differences in MPV between these three groups. Intriguingly, one month after clopidogrel treatment, two LOF carriers had a higher MPV than no LOF carriers (11.5 ± 1.2 vs. 10.3 ± 0.9 fl, $P < 0.001$) and one LOF carriers (11.5 ± 1.2 vs.
Table 2. Hematologic routines of the study population according to CYP2C19 genotype

<table>
<thead>
<tr>
<th>Hematologic routines</th>
<th>No LOF carriers n = 80</th>
<th>1 LOF carriers n = 88</th>
<th>2 LOF carriers n = 28</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBC (10^12/L)</td>
<td>4.5 ± 0.5</td>
<td>4.6 ± 0.4</td>
<td>4.5 ± 0.3</td>
<td>0.451</td>
</tr>
<tr>
<td>Hb (g/L)</td>
<td>136.0 ± 15.7</td>
<td>138.5 ± 15.0</td>
<td>135.9 ± 14.4</td>
<td>0.805</td>
</tr>
<tr>
<td>WBC (10^9/L)</td>
<td>6.7 ± 1.6</td>
<td>6.8 ± 2.3</td>
<td>7.5 ± 1.9</td>
<td>0.383</td>
</tr>
<tr>
<td>NEUT (%)</td>
<td>61.4 ± 9.5</td>
<td>61.2 ± 9.7</td>
<td>57.9 ± 10.7</td>
<td>0.429</td>
</tr>
<tr>
<td>PLT (10^9/L)</td>
<td>210.2 ± 65.9</td>
<td>193.1 ± 46.3</td>
<td>197.0 ± 34.9</td>
<td>0.801</td>
</tr>
<tr>
<td>P-LCR (%)</td>
<td>33.0 ± 7.2</td>
<td>33.0 ± 8.3</td>
<td>34.8 ± 4.9</td>
<td>0.665</td>
</tr>
<tr>
<td>PDW (fl)</td>
<td>13.4 ± 2.7</td>
<td>13.4 ± 2.5</td>
<td>13.5 ± 2.9</td>
<td>0.982</td>
</tr>
<tr>
<td>MPV (fl)</td>
<td>11.1 ± 0.9</td>
<td>11.3 ± 1.1</td>
<td>11.6 ± 0.3</td>
<td>0.281</td>
</tr>
<tr>
<td>After therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBC (10^12/L)</td>
<td>4.3 ± 0.5</td>
<td>4.6 ± 0.4</td>
<td>4.4 ± 0.5</td>
<td>0.167</td>
</tr>
<tr>
<td>Hb (g/L)</td>
<td>133.4 ± 16.0</td>
<td>137.4 ± 12.9</td>
<td>128.4 ± 10.6</td>
<td>0.062</td>
</tr>
<tr>
<td>WBC (10^9/L)</td>
<td>8.1 ± 3.5</td>
<td>6.4 ± 1.3</td>
<td>6.3 ± 1.3</td>
<td>0.654</td>
</tr>
<tr>
<td>NEUT (%)</td>
<td>60.6 ± 9.0</td>
<td>60.0 ± 9.3</td>
<td>63.9 ± 11.5</td>
<td>0.320</td>
</tr>
<tr>
<td>PLT (10^9/L)</td>
<td>222.0 ± 76.4</td>
<td>207.3 ± 58.1</td>
<td>197.0 ± 54.2</td>
<td>0.376</td>
</tr>
<tr>
<td>P-LCR (%)</td>
<td>36.4 ± 7.0</td>
<td>33.9 ± 8.0</td>
<td>34.1 ± 7.8</td>
<td>0.484</td>
</tr>
<tr>
<td>PDW (fl)</td>
<td>13.7 ± 1.7</td>
<td>13.6 ± 2.3</td>
<td>13.5 ± 1.6</td>
<td>0.928</td>
</tr>
<tr>
<td>MPV (fl)</td>
<td>10.3 ± 0.9</td>
<td>10.6 ± 0.8</td>
<td>11.5 ± 1.2</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Data are expressed mean ± SD. RBC, red blood cell; Hb, hemoglobin; WBC, white blood cell, NEUT, neutrophil percentage; PLT, platelet counts; P-LCR, platelet large cell ratio; PDW, platelet distribution width.

Discussion

To the best of our knowledge, the present study is the first to investigate the influence of CYP2C19 LOF alleles on P2Y12-Gi signaling of post-clopidogrel platelets in Chinese patients with ACS. This study demonstrated that, although VASP-PRI increased depending on the numbers of the CYP2C19 LOF allele, increased P-Akt indexes only existed in two CYP2C19 LOF carriers (not in one CYP2C19 LOF carriers) after clopidogrel treatment. A previous study reported that P-Akt index was inhibited by clopidogrel in parallel with VASP-PRI in whites [15]. However, the current study found that P-Akt index did not strictly correlate to VASP-PRI in the Chinese clinic setting.

Many studies have shown that carriage of CYP2C19 LOF alleles is likely to increase the risk of adverse cardiovascular outcomes [16]. Certain alleles of CYP2C19 have been associated with reduced enzymatic function and decreased conversion of clopidogrel to the active 10.6 ± 0.8 fl, *P = 0.002). There were no differences in MPV between no LOF carriers and one LOF carriers (10.3 ± 0.9 vs. 10.6 ± 0.8 fl, *P = 0.109). After clopidogrel treatment, MPV reduced in the group carrying no LOF alleles (11.1 ± 0.9 vs. 10.3 ± 0.9 fl, *P < 0.001) and in the group carrying one LOF allele (11.3 ± 1.1 vs. 10.6 ± 0.8 fl, *P = 0.002), but remained unchanged in the group carrying two LOF alleles (11.6 ± 0.3 vs. 11.5 ± 1.2 fl, *P = 0.776). MPV remained unchanged in two LOF carriers after one month of clopidogrel treatment. Thus, only carrier with two CYP2C19 LOFs had HPR and poorer prognosis.
metabolite [10]. There are considerable ethnic differences in distribution patterns and types of CYP2C19 LOF alleles. The carriage prevalence of the CYP2C19 LOF variant is 35%–45% and 25%–35% among blacks and whites, respectively. It is 55%–70% among East Asians [17]. Prevalence of CYP2C19 poor metabolizers (subjects carrying 2 LOF alleles) is 5% among blacks and whites, while it is 10%–20% among East Asians [18]. In Asian patients, platelet reactivity increases, proportionally, according to the number of CYP2C19 LOF alleles (*2 or *3). This is related to a high prevalence of the consensus-defined high on-treatment platelet reactivity (HPR) (more than 50%) [18]. A previous study showed that up to 60.6% of Chinese ACS patients carried one or two CYP2C19 LOF alleles, while carriage of only two CYP2C19 LOF alleles showed poorer clinical outcomes [9, 19]. Based on the evaluation of two G-dependent events, including VASP-PRI and P-Akt index, this study further demonstrated that, although carriers of one or two CYP2C19 LOF alleles had higher VASP-PRI, only two LOF allele carriers showed higher P-Akt index and MPV after clopidogrel therapy. Thus, carriers with two LOFs might have a more active state of ADP P2Yi12 receptors, which could explain why only two LOF alleles carriage was associated with poorer clinical outcome in Chinese ACS patients.

Platelet activation resulting from plaque disruption plays a crucial role in pathological and clinical outcomes of ACS [20]. G. Subunits α-mediated VASP dephosphorylation favors GPIIb/IIIa in an activating conformation, leading to binding of fibrinogen to GPIIb/IIIa, promoting platelet aggregation [21] and adhesion [22]. VASP dephosphorylation has no effects on platelet secretion [23], spreading [23], and clot retraction [23]. In contrast, Subunits β-mediated Akt phosphorylation plays a central role in mediating multiple platelet function, including platelet aggregation [24], secretion [24], adhesion [25], spreading [26], and clot retraction [27]. The integral roles of Akt phosphorylation in platelet activation, in combination with the present finding that P-Akt indexes only increase in two CYP2C19 LOF carriers, further emphasizes the potential roles of Akt pathways in the pathobiology and prognosis of ACS.

Elevated MPV levels have been identified as an independent risk factor for myocardial infarction in patients with coronary artery disease, as well as for death or recurrent vascular events post ACS [28]. Asher et al. [29] found that nonresponders to clopidogrel had significantly larger MPV. In the current study, MPV was significantly reduced in no LOF carriers and one LOF carriers after one month of clopidogrel treatment. However, MPV remained unchanged in two LOF carriers after one month of clopidogrel treatment. Larger platelets contain more granules and mitochondria per unit volume, having a higher capacity for production of thromboxane A2 and secretion of transforming growth factor β. They express more glycoprotein Iib/IIia per unit area of plasma membrane than their smaller counterparts [30]. Unchanged MPV after clopidogrel treatment in two CYP2C19 LOF carriers suggests that these patients have a poorer prognosis after clopidogrel treatment.

The present study had several limitations, however. First, this study was a single-center investigation. Results should be verified by multicenter studies. Second, this study did not analyze relationships between P2Yi12-G signaling and clinical outcomes in ACS patients. Third, this study only concerned Chinese patients, a population characterized by a high prevalence of CYP2C19 LOF alleles. Therefore, present results may not be generalized to the Western population.

In conclusion, in Chinese patients with ACS receiving PCI and clopidogrel treatment, only two CYP2C19 LOF carriers showed a more active state of P2Yi12-G signaling and larger MPV, containing increased VASP-PRI and P-Akt indexes.

Acknowledgements

This work was supported with funding from the National Natural Science Foundation of China (81573423, 81770137, 81300152, 81371268, 81772615, 81402920).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Si Zhang, Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong’an Road, Xuhui District, Shanghai 200032, P. R. China. Fax: +86-21-64437203; E-mail: zhangsi@fudan.edu.cn; Dr. Bing
References

Fan, Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai 200032, P. R. China. Fax: +86-21-64223006; E-mail: fan.bing@zs-hospital.sh.cn

CYP2C19 polymorphisms on P2Y₁₂-Gᵢ₉ signaling and MPV

CYP2C19 polymorphisms on P2Y$_{12}$-Gi signaling and MPV

Supplementary Figure 1. Diagram of CYP2C19 gene sequencing. A. At the point of rs4244285, there are two variants of CYP2C19*2, which can be differentiated to 0, 1, and 2 CYP2C19 LOF; B. At the point of rs4986893, there are two variants of CYP2C19*3, which can be differentiated to 0, 1, and 2 CYP2C19 LOF.
Supplementary Figure 2. Flow cytometric analysis of VASP phosphorylation. The platelet population was gated by the specific surface marker CD61-PE [4]. The geometric mean fluorescence intensities (MFIs) for VASP-phosphorylation of platelets incubated with iloprost alone (upper right panel) was corrected by subtracting the isotype control MFI. The MFI of platelets incubated with iloprost plus ADP was calculated in the same way. Finally, both MFI values are reported as VASP-PRI (VASP-PRI = [(MFI_{PGE1} - MFI_{PGE1+ADP})/MFI_{PGE1}] × 100%).
CYP2C19 polymorphisms on P2Y_{12}-G_{i} signaling and MPV

Supplementary Figure 3. The platelet population was gated by the specific surface marker CD61-PE. Twenty thousand platelets were gated. Geometric mean fluorescence intensities (MFIs) for Akt-phosphorylation of resting platelets (upper right panel) was control MFI. The MFI of platelets incubated with ADP was calculated in the same way. Finally, both MFI values are reported as P-Akt index (P-Akt index (%) = \[\frac{\text{MFI}_{\text{ADP}}}{\text{MFI}_{\text{ADP}} + \text{MFI}_{\text{resting}}} \times 100\%\]).