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The transcription factor Nrf2 might  
be involved in the process of renal aging
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Abstract: Increased inflammation and oxidative stress are associated with aging-related renal damage. We aimed 
to explore the role of Nrf2 (an important transcription factor involved in antioxidant responses) in the process of 
renal aging and to identify the potential mechanism. In in vivo experiments, mice were divided into three groups: 
the young group (3 months), the old group (23-24 months), and the sulforaphane (SFN) treatment group (23-24 
months). We compared the metabolic characteristics, kidney morphology changes (PAS and Masson’s trichrome 
staining), SA-β-gal staining, the expression of p16 and Nrf2 (Western blot) among the three groups. Real-time quan-
titative polymerase chain reaction was used to detect the expression of Nrf2 downstream genes and pro-oxidant 
and pro-inflammatory markers. The results showed that the expression of Nrf2 was lower in the older mice than in 
the younger mice. Compared with the old group, the level of serum urea nitrogen and the urine protein/urine creati-
nine ratio were lower, and the kidney weight/body weight was higher in the SFN treatment group. SFN upregulated 
Nrf2 target genes in the old mice while reducing interleukins (IL-1β, IL-6) and inducible nitric oxide synthase (iNOS). 
In in vitro experiments, SFN was used to stimulate the renal residential cells isolated from old mice, and Western 
blot was used to detect the expression of p16, Nrf2 and iNOS at different time points. We found that as the SFN 
intervention time was extended in the renal residential cells, expression of Nrf2 increased while iNOS decreased. 
Thus, Nrf2 plays an important role in renal aging, and Nrf2 activation by SFN could alleviate renal damage related 
to aging via antioxidant and anti-inflammatory effects.
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Introduction

Aging in most species is associated with im- 
paired adaptive and homeostatic mechanisms, 
leaving an individual more susceptible to envi-
ronmental and internal stress with increasing 
rates of morbidity and mortality [1]. The kidney 
is a typical target organ of such age-associated 
tissue damage, and the increased incidence of 
chronic kidney disease in the elderly is a public 
health problem worldwide [2]. Presently, the 
molecular basis of such renal aging is not fully 
understood.

Nuclear erythroid 2 p45-related factor-2 (Nrf2) 
is a basic leucine zipper redox-sensitive tran-
scription factor that regulates the expression of 
several cellular antioxidant and cytoprotective 
genes. Nrf2-mediated transcriptional respons-

es have been shown to be protective against 
various experimental diseases, including LPS-
induced sepsis, oxidative lung injury and fib- 
rosis, asthma, smoking-induced emphysema, 
and brain IRL [3]. Additionally, it has been 
reported that Nrf2 may be involved in organ 
aging [4, 5].

In this study, we sought to explore the role of 
Nrf2 in the process of renal aging and the 
potential mechanism, which may provide new 
ideas for anti-aging therapies.

Material and methods

Animals

All experiments were performed using C57Bl/6 
mice at the age of 3 months (young group) or 
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23-24 months (old group). Mice were pur-
chased from the Si Bei Fu Laboratory Animal 
Company (Beijing, China). The experimental 
protocol was carried out in accordance with the 
approved guidelines of the Institutional Animal 
Care and Use Committee at the Chinese PLA 
General Hospital.

Mice were housed under specific pathogen-
free conditions in the Experimental Animal 
Center of the Academy of Military Medical 
Sciences: 22 ± 1°C, 40% humidity, 12/12-h 
light/dark cycle, and free access to water. Mice 
were allocated randomly into three groups (n = 
at least 6 per group): young, old, and sulfora-
phane (SFN) groups. For the SFN group, SFN 
(Sigma-Aldrich, St. Louis, MO, USA) was inject-
ed subcutaneously at 0.5 mg/kg for 5 days per 
week for 3 months at age 20-21 months. As 
SFN was dissolved in dimethyl sulfoxide (DMSO) 
and diluted in phosphate-buffered saline (PBS), 
mice serving as vehicle controls were given the 
same volume of PBS (1% DMSO).

Histological examinations

Kidney slices were fixed in 10% formalin solu-
tion overnight. After automated dehydration 
through a graded alcohol series, transverse 
kidney slices were embedded in paraffin wax, 
sectioned at 4 μm, and stained with periodic 
acid-Schiff (PAS) and Masson’s trichrome. His- 
tological examinations were performed inde-
pendently in a blinded fashion by two observ-
ers. Quantitative analyses of glomerular and 
fibrosis-positive areas were made with the Im- 
age-Pro software (Media Cybernetics Inc., Si- 
lver Springs, MD, USA) from 20 random fields 
per mouse at a magnification of × 200.

gal) staining solution (1 mg/mL X-gal, 40 mM 
citric acid/sodium phosphate, pH 6.0, 5 mM 
potassium ferrocyanide, 5 mM potassium ferri-
cyanide, 150 Mm NaCl, and 2 mM MgCl2) over-
night at 37°C. Tissue sections were counter-
stained with eosin and examined under a mi- 
croscope. An investigator who was blinded to 
sample identity performed the image analysis. 
Quantitative analysis of SA-β-gal staining posi-
tive area was performed with the Image-Pro 
software from 20 random fields per mouse at a 
total magnification of × 200.

Western blot analysis

Protein concentration was determined with the 
Pierce BCA assay kit (Thermo Fisher Scientific, 
Waltham, MA, USA). In total, 50-100 μg protein 
was separated by 6-16% sodium dodecyl sul-
fate-polyacrylamide gel electrophoresis, trans-
ferred to a nitrocellulose membrane, blocked 
with blocking buffer for 1 h at room tempera-
ture, and incubated with primary antibodies 
(p16, Nrf2, iNOS) at 4°C overnight. Blots were 
subsequently incubated with secondary immu-
noglobulins conjugated with horseradish per-
oxidase. Immunoreactive bands were visuali- 
zed by enhanced chemiluminescence, and den-
sitometry was performed using Quantity One 
software (Bio-Rad Laboratories, Hercules, CA, 
USA). Band intensities were quantified with 
ImageJ software (NIH, Bethesda, MD, USA).

RNA extraction and real-time quantitative poly-
merase chain reaction (PCR)

Total RNA was isolated using the TRIzol reagent 
(Invitrogen, Carlsbad, CA, USA). The high-capac-
ity cDNA Reverse Transcription Kit (Applied 

Table 1. Genes, primer, and conditions for RT-PCR amplification
Gene 
product Forward Primer Reverse primer

Nrf2 5’ TGGACGGGACTATTGAAGGCTG 3’ 5’ GCCGCCTTTTCAGTAGATGGAGG 3’
NQO1 5’ ATTGTACTGGCCCATTCAGA 3’ 5’ GGCCATTGTTTACTTTGAGC 3’
HO-1 5’ TGCTCAACATCCAGCTCTTTGA 3’ 5’ GCAGAATCTTGCACTTTGTTGCT 3’
SOD1 5’ ATCCACTTCGAGCAGAAG 3’ 5’ TTCCACCTTTGCCCAAGT 3’
SOD2 5’ AGCGGTCGTGTAAACCTCA 3’ 5’ AGACATGGCTGTCAGCTTC 3’
CAT 5’ AATCCTACACCATGTCGGACA 3’ 5’ CGGTCTTGTAATGGAACTTGC 3’
iNOS 5’ CAAGAGTTTGACCAGAGGACC 3’ 5’ TGGAACCACTCGTACTTGGGA 3’
IL-1β 5’-TTGACGGACCCCAAAGAGTG-3’ 5’-ACTCCTGTACTCGTGGAAGA-3
IL-6 5’ GAGGATACCACTCCCAACAGACC 3’ 5’ AAGTGCATCATCGTTGTTCATACA 3’
β-Actin 5’ TGTTTGAGACCTTCAACACC 3’ 5’ CGCTCATTGCCGATAGTGAT 3’

Senescence-associat- 
ed β-galactosidase 
staining

Cryostat sections (4 
μm) were mounted on 
glass slides and fixed 
in 0.2% glutaraldehy- 
de and 2% formalde-
hyde at room tempera-
ture for 15 min. Secti- 
ons were washed in 
PBS and incubated in 
freshly prepared sene- 
scence-associated β- 
galactosidase (SA-β-
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Biosystems, Foster City, CA, USA) and a Ge- 
neAmp PCR System 9700 (Applied Biosystems) 
were used to generate cDNA. Gene expression 
analysis used quantitative real-time PCR, with 
the Taqman Master mix and specific probes 
and primers (as shown in Table 1). PCR was 
performed on a 7500 Real-time PCR System 
(Applied Biosystems), and the results were ana-
lyzed using the 2-ΔΔCT method with normaliza-
tion against glyceraldehyde 3-phosphate dehy-
drogenase expression (n = 6 for each group).

Isolation of primary renal residential cells

Primary mesangial cells of renal glomeruli, from 
male mice at the age of 23-24 mouths, were 
isolated and cultured as described previously. 
Cells were grown in RPMI-1640 medium con-
taining 10% fetal bovine serum. The experimen-
tal group was treated with 2.5 μM SFN in 0.1% 
BSA for 0, 3, 9, or 24 h. Cell protein extraction 
was performed according to a standardized 
protocol.

Statistical analysis

All data analyses were performed using SPSS 
software (ver. 18.0; SPSS, Chicago, IL, USA). 

Data are expressed as the means ± SD. Multi-
comparison among groups was performed by 
an ANOVA test. P values < 0.05 were consid-
ered to indicate statistical significance.

Results

Nrf2 expression in kidney tissues

As Nrf2 might be involved in renal aging, we 
first detected the expression of Nrf2 in kidney 
tissues (old & young). We found that the expres-
sion of Nrf2 decreased significantly in kidney 
tissues of old rats compared with young rats (P 
< 0.001) (Figure 1B). Nrf2 activator SFN could 
increase the expression of Nrf2 in the old mice 
(P < 0.001) (Figure 1C). Thus, we speculated 
that Nrf2 might be involved in renal aging. The 
Nrf2 activator SFN can be used during in vivo 
and in vitro experiments to understand the role 
of Nrf2 in renal aging.

The impact of Nrf2 on metabolic index

We first compared the difference between the 
young group and the old group. As shown in 
Table 2, compared with the young group, in the 
old group, the body weight (P = 0.002), serum 

Figure 1. Kidney morphology changes (PAS 
staining and Masson’s Trichrome staining) 
and SA-β-gal staining (A); p16/Nrf2 expres-
sion level in the young/old group (B); p16/
Nrf2 expression level in the old/SFN group 
(C). *P < 0.05.
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urea nitrogen (P = 0.027), triglyceride levels (P 
= 0.032), and urine protein/urine creatinine 
ratio (P < 0.001) were higher, and the kidney 
weight/body weight (P = 0.029) was lower. 
Compared with the old group, in the SFN group, 
the level of serum urea nitrogen (P = 0.031) 
and the urine protein/urine creatinine ratio (P = 

0.012) increased in the old group. However, 
there was no significant difference between the 
old group and SFN group (Figure 1A).

Senescence marker changes in the kidney

p16 and β-gal are both senescence markers in 
aging related research. We found that the 
expression of p16 increased significantly in old 
versus young kidney tissues (P = 0.022) (Figure 
1B), while it declined significantly in the SFN 
group versus the old group (P = 0.032) (Figure 
1C). As shown in Figure 1A, the positive rate of 
SA-β-gal staining of kidney was markedly higher 
in the old than the young group (P < 0.001); 
however, SFN decreased the number of SA-β-
gal positive cells (P = 0.028). 

Expression of genes downstream Nrf2

Compared with the young group, the expres-
sion of Nrf2 (P = 0.015), NQO1 (P = 0.022), 
HO-1 (P = 0.028), SOD1 (P = 0.032), SOD2 (P = 
0.026), and CAT (P = 0.033) decreased in the 
old group (RT-PCR). Compared with the old 
group, the expression of Nrf2 (P = 0.024), NQO1 

Table 2. Metabolic parameters and renal functions in three groups
Parameter Young group Old group Sulforaphane group
Body weight (g) 19.35 ± 2.56 39.58 ± 7.58* 32.78±5.64*

Kidney weight/body weight (g/100 g of body wt) 0.72 ± 0.08 0.42 ± 0.12* 0.65 ± 0.11#

Serum urea nitrogen (mg/dL) 3.85 ± 0.65 6.45 ± 1.55* 5.12 ± 2.10#

Serum creatinine (mg/dL) 31.25 ± 5.99 33.68 ± 7.44 32.21 ± 5.35
Triglyceridies (mmol/L) 0.64 ± 0.22 1.52 ± 0.53* 1.10 ± 0.21*

Cholesterol (mmol/L) 1.75 ± 0.42 2.22 ± 0.42 2.09 ± 0.52
Serum albumin (g/L) 20.32 ± 5.23 24.71 ± 2.99 22.97 ± 3.12
Total protein (g/L) 1.62 ± 4.20 1.89 ± 6.87 1.72 ± 5.42
Urine protein/urine creatinine ratio (mg/mmol) 94.56 ± 5.64 356.91 ± 35.48* 210.76 ± 32.44*,#

*P < 0.05, compared with young group; #P < 0.05, compared with old group.

Figure 2. The expression level of p16, Nrf2 and iNOS at different time point 
in old renal residential cells.

Figure 3. mRNA level of Nrf2, NQO1, NO-1, SOD1, 
SOD2 and CAT in the three group. *Compared with 
the young group P < 0.05; #Compared with the old 
group P < 0.05.

0.033) were lower, and the 
kidney weight/body weight (P 
= 0.025) was higher.

Kidney morphological chang-
es

Renal tissues were examined 
with routine PAS and Masson’s 
trichrome staining. Compared 
with the young group, the num-
ber of normal glomeruli decre- 
ased with age, whereas the 
glomerular volume (P = 0.023) 
and degree of fibrosis (P = 
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(P = 0.033), HO-1 (P = 0.029), SOD1 (P = 
0.035), SOD2 (P = 0.031), and CAT (P = 0.028) 
increased in the SFN group (Figure 3).

Expression of pro-oxidant and pro-inflammato-
ry markers

Oxidation and inflammation are related to ag- 
ing. Compared with the young group, the ex- 
pression levels of inducible nitric oxide syn-
thase (iNOS) (P = 0.026) and interleukins (IL1β, 
IL-6) (P = 0.028, P = 0.033, respectively) were 
higher in the old group (RT-PCR). However, SFN 
treatment decreased iNOS, IL1β, and IL-6 (P = 
0.028, P = 0.035, P = 0.026) (Figure 4).

In vitro experiment: Nrf2 expression in old re-
nal residential cells

As the SFN intervention time was extended, 
expression of Nrf2 increased, and the expres-
sion of p16 and iNOS decreased (Figure 2).

Discussion

The transcription factor Nrf2 is an emerging 
therapeutic target for several diseases, includ-
ing cancer [6], neurodegenerative diseases [7], 
pulmonary fibrosis [8], diabetes [9], and dia-
betic nephropathy [10]. Nrf2 regulates the ex- 
pression of numerous genes through antioxi-
dant response elements (AREs) in their promot-
ers to neutralize free radicals and accelerate 
the removal of environmental toxins. Prior to 

of p16 and SA-β-gal increased, whereas the 
expression of Nrf2 decreased, in the old gr- 
oup. We showed the importance of SFN-in- 
duced Nrf2 expression in protection against 
renal aging. This was also reflected by the sig-
nificant reductions in serum urea nitrogen, the 
urine protein/urine creatinine ratio, and the 
increase in kidney weight/body weight. In vitro, 
as the SFN intervention time was extended,  
the expression of p16 decreased, whereas the 
expression of Nrf2 increased, in the old re- 
nal residential cells. Additionally, SFN-induced 
Nrf2 expression could reduce renal oxidative 
damage and inflammation both in vivo and in 
vitro. This evidence suggests that Nrf2 is in- 
volved in renal aging and that high expression 
of Nrf2 may inhibit renal aging.

Nrf2, as a member of the “cap ‘n’ collar” family, 
is a master regulator of cellular detoxification 
responses and redox status [12]. Under physi-
ological conditions, Kelch-like ECH-associated 
protein 1 (KEAP1) binds to Nrf2 and sequest- 
ers it in the cytoplasm. Under basal conditions, 
KEAP1 mediates rapid ubiquitination and sub-
sequent degradation of Nrf2 by the protea-
some [13]. Upon exposure of cells to oxidative 
stress or electrophilic compounds, Nrf2 disso-
ciates from KEAP1 and translocates into the 
nucleus to bind to antioxidant-responsive ele-
ments in the genes encoding antioxidant en- 
zymes, such as NADPH: quinone oxidoreduc-
tase (NQO1), heme oxgenase-1 (HO-1), gluta- 

Figure 4. mRNA level of iNOS, IL-
1β and IL-6 in the three group. 
*Compared with the young group 
P < 0.05; #Compared with the old 
group P < 0.05.

cell stress, activation of Nrf2 
with low-toxicity compounds, 
such as SFN from cruciferous 
vegetables, can delay disease 
onset or improve prognosis 
[11]. In this study, we demon-
strated that Nrf2 was involved 
in renal aging both in vivo and 
in vitro. Compared with the 
young group, body weight, se- 
rum urea nitrogen and triglyc-
eride levels, and the urine  
protein/urine creatinine ratio 
were higher, and the kidney 
weight/body weight lower, in 
the old group. Moreover, the 
number of normal glomeruli 
was reduced with age, where-
as the glomerular volume and 
degree of fibrosis increased. 
Furthermore, the expression 
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thione S-transferase, superoxide dismutase 
(SOD), catalase (CAT), and γ-glutamylcysteine 
synthetase. These antioxidant enzymes (AOEs) 
play important roles in protecting cells from 
reactive oxygen species. It has been shown 
that promoting the expression of phase II 
detoxifying and antioxidant enzymes, such as 
glutathione peroxidase, quinone reductase and 
NQO1, facilitates the prevention of oxidative 
stress-induce disease and aging. It has been 
reported that decreased expression of AOEs is 
associated with aging [14]. Studies showed 
that the decline in Nrf2 results in the loss of 
glutathione synthesis in an age-dependent 
manner. Induction of such phase II AOE genes 
by Nrf2 occurs through recruitment to the  
AREs in their gene promoters [15]. Under oxi-
dant conditions, Nrf2 activates a battery of 
antioxidant and cytoprotective genes that sha- 
re a common cis-acting enhancer sequence, 
the ARE, which includes heme oxygenase-1 
(HO-1). In this study, Nrf2 and its downstream 
genes/ARE genes were all decreased in the 
older mice, while SFN could increase their lev-
els. Upregulation of these Nrf2-dependent an- 
tioxidants promotes detoxification and anti-
inflammatory function [16]. In vivo, SFN-induc- 
ed Nrf2 activation could inhibit the expression 
of iNOS, IL-β, and IL-6. Thus, the regulation of 
cellular antioxidant and anti-inflammatory ma- 
chinery by Nrf2 plays a central role in the de- 
fense against oxidative stress [17, 18]. It has 
been reported that ablation of the Nrf2 gene 
causes a lupus-like autoimmune nephritis and 
exacerbates diabetes-induced oxidative stress, 
inflammation, and nephropathy in experimental 
animals [19]. Upregulation of the Nrf2 pathway 
in endothelial cells prevented hydrogen perox-
ide-induced oxidative toxicity and reduced in- 
flammation by suppressing activation of the 
MAPK pathway. Additionally, Nrf2-mediated in- 
hibition of p38 phosphorylation reduced inflam-
matory cytokines [20].

SFN is a natural product found in cruciferous 
vegetables, such as broccoli, Brussel sprouts, 
and cabbage [21]. Although the molecular tar-
gets of this molecule have not been character-
ized completely, the best-known effect of SFN 
is the induction of Nrf2-dependent gene expr- 
ession [22]. Studies have shown that SFN 
metabolites were detected in all tissues at 2 
and 6 h after gavage, with the highest concen-
trations being in the small intestine, prostate, 
lung, and kidney, suggesting that SFN is bio-
available and could be an effective dietary che-
moprevention agent in these tissues [23]. SFN 

has gained attention as an indirect antioxidant 
due to its ability to induce the expression of 
several enzymes via the KEAP1/Nrf2 pathway 
[23]. It has been reported that the preventative 
effects of SFN are mediated by induction of 
Nrf2 in chemical or ischemia-induced renal da- 
mage [24, 25]. In addition, SFN has been used 
to downregulate macrophage activation in in 
vitro models of inflammation [26].

Collectively, our findings indicate that the thera-
peutic benefit of Nrf2 activation in renal aging 
is multifactorial. In addition to its antioxidant 
function, Nrf2 also negatively regulated inflam-
mation-associated cytokine expression. These 
results provide experimental evidence that 
dietary compounds targeting Nrf2 activation 
could be useful therapeutically to improve met-
abolic disorders and relieve kidney damage 
induced by aging. This study lays the founda-
tion for the clinical evaluation of and, ultimate-
ly, the development of new Nrf2 activators for 
potential therapeutic use to delay renal aging.
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