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Original Article
Docosahexaenoic acid suppresses pro-inflammatory 
macrophages and promotes anti-inflammatory/ 
regulatory macrophage polarization  
through regulation of cytokines
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Abstract: Macrophages are one of the most important immune cells in the innate immune system. Naive monocytes 
(M0) differentiate into different forms of activated macrophages depending on the cytokines in the microenviron-
ment. Activated macrophages include classic/M1 macrophages and alternative/M2 or regulatory macrophages 
(Mreg). Docosahexaenoic acid (DHA), a long chain n-3 polyunsaturated fatty acid, is a common dietary supplement 
used against numerous diseases. The present in vitro study pre-treated native THP-1 cells with DHA and induced 
polarization by phorbol 12-myristate 13-acetate (PMA). In THP-1-derived macrophages, pre-treatment of DHA re-
duced expression of M1 and increased M2/Mreg cytokines and markers. Oral administration of DHA decreased 
M1 and increased M2-like macrophages in mice. Moreover, DHA decreased M1 cytokines (IL-12 and IFN-γ) and 
increased M2/Mreg cytokines (IL-4 and IL-10) in blood. In conclusion, present results showed that DHA inhibited M1 
and induced M2/regulatory macrophage polarization through regulation of cytokine in THP-1 cells and mice. These 
findings suggest that supplementation of DHA may provide a potential way to prevent and improve autoimmune 
symptoms or diseases.
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Introduction

Macrophages are one of the most important 
immune cells in the innate immune system. 
Naive monocytes (M0) differentiate into differ-
ent forms of activated macrophages depending 
on the cytokines in the microenvironment [1]. 
Macrophage activation includes classic and 
alternative activation. Monocytes are differenti-
ated into classic/M1 macrophages by IFN-γ or 
LPS stimulation. M1 macrophages are involved 
in inflammation, host defense, and promoting 
the response of T helper 1 cells (Th1) [2]. 
Alternative activation includes M2 and regula-
tory macrophages (Mreg). Monocytes are dif-
ferentiated into M2 macrophages by IL-4 and 
IL-13 stimulation. M2 macrophages are involv- 
ed in tissue remodeling and promoting the 
response of T helper 2 cells (Th2) [3]. Monocytes 
are differentiated into Mreg upon stimulation 

by IL-10. They are involved in immune regulation 
and promotion of the response of regulatory 
T-cells (Treg) [4-6].

Docosahexaenoic acid (DHA), a long chain n-3 
polyunsaturated fatty acid (PUFA), is a common 
dietary supplement known to have a variety of 
health benefits against inflammation, obesity, 
cardiovascular disease, cancer, fatty liver, and 
autoimmune disease [7-9]. Recent studies have 
indicated that DHA affects macrophage polar-
ization by inhibiting M1 markers and enhancing 
M2/Mreg markers in different disease models 
(including obesity, atherosclerosis, apoptosis, 
and non-alcoholic fatty liver models) [10-13]. 
Furthermore, DHA regulates macrophage polar-
ization-related cytokines. DHA inhibits levels of 
IFN-γ and IL-12 in hypersensitivity or Listeria 
monocytogenes challenging mice [14, 15] and 
enhances levels of IL-10 or IL-4 in monocytes, 
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adipocytes, or intestinal epithelial cells [16-18]. 
However, the effects of DHA on macrophage 
polarization and regulation of polarization-cyto-
kines under normal conditions have not been 
investigated.

Isolation of monocytes/macrophages from tis-
sue or blood is technical and complex. The 
THP-1 cell line is a human leukemic monocyte 
cell line derived from an acute monocytic leuke-
mia patient, differentiating into macrophages 
in the presence of phorbol 12-myristate 
13-acetate (PMA) or 1,25-dihydroxyvitamin D3 
[19-21]. A previous study demonstrated that 
THP-1-derived macrophages express the M2 
marker (CD206), implying that THP-1 retains 
the plasticity of polarization after PMA treat-
ment [21]. 

The present study examined the effects of DHA 
on macrophage polarization in the THP-1 cell 
line and murine model.

Materials and methods

Cell culture

Human monocyte cell line THP-1 (Food Industry 
Research and Development Institute, Hsinchu, 
Taiwan) was cultured in RPMI-1640 medium 
(SH300027; GE Healthcare Life Sciences, 
Marlborough, MA, USA), with 10% fetal bovine 
serum (FBS; Thermo Fisher Scientific, Waltham, 
MA, USA), 1% glutamine (GE Healthcare Life 
Sciences), and 0.05 mM 2-mercaptoethanol 
(Sigma-Aldrich, St. Louis, MO, USA). All cells 
were cultured in humidified 95% air plus 5% 
CO2 at 37°C.

DHA treatment and macrophage differentia-
tion

DHA was purchased from Cayman Chemical 
(90310; Cayman Chemical, Ann Arbor, MI, USA). 
THP-1 cells were treated with 1% bovine serum 
albumin (BSA; Gold Biotechnology, St. Louis, 
MO, USA), conjugated to 100 µM DHA in etha-
nol or 1% BSA, plus an equal volume of ethanol 
in the control group, for 24 hours, along with 
wash out DHA by phosphate buffed saline (PBS) 
buffer. 4 x 105 DHA-treated THP-1 cells differ-
entiated into macrophages after treatment 
with 100 nM phorbol 12-myristate 13-acetate 
(PMA; Sigma-Aldrich) for 48 hours. The condi-
tioned medium was collected for enzyme-linked 

immunosorbent assay (ELISA). Cell pellets were 
collected for quantitative polymerase chain 
reaction (qPCR).

RNA extraction and reverse transcription-quan-
titative polymerase chain reaction (qRT-PCR)

Total RNA was extracted using TRIzol Reagent 
(Life Technologies, Grand Island, NY, USA) and 
cDNA was synthesized using a high capacity 
cDNA reverse transcription kit (Applied Bio- 
systems, Foster, CA, USA). qRT-PCR with DyNA- 
mo Flash SYBR Green qPCR Kit (Thermo Fish- 
er Scientific, Inc.) was performed using a 
C1000TM Thermal Cycler (Bio-Rad, Hercules, 
CA, USA). qPCR was performed using SYBR 
Green, conducted at 95°C for 7 minutes and 
then 40 cycles of 95°C for 10 seconds and 
60°C for 30 seconds. Primer list pairs are noted 
in Supplementary Table 1.

Experimental animals and DHA administration

All mice were obtained from the National 
Laboratory Animal Center (Taipei, Taiwan) and 
animal experiments were approved by the 
Institutional Animal Care and Use Committee 
(IACUC) of National Taiwan University. Male 
C57BL/6J mice were administrated 36 mg/kg 
DHA in ethanol or an equal volume of ethanol 
by oral gavage from 8 weeks of age (eight mice 
per group, 3 independent experiments). After 6 
weeks, whole blood from facial veins was col-
lected into EDTA-coated tubes and centrifuged 
(2000 g for 30 mins) to separate plasma and 
blood cells. Plasma was collected for enzyme-
linked immunosorbent assay (ELISA). Red 
blood cells were lysed with Ammonium-
Chloride-Potassium (ACK) lysing buffer (Sigma-
Aldrich) and leukocyte pellets were suspended 
in 2% FBS in PBS. Immune cell populations 
were analyzed by flow cytometry. After 2 weeks, 
mice were injected with 100 µg lipopolysaccha-
ride (LPS) in 100 μL and blood was collected 
after 3 hours, 6 hours, and 48 hours. Plasma 
was obtained and used for ELISA. 

Flow cytometry

Leukocytes from mouse blood were stained 
with mouse-specific antibodies, CD11b-BB515 
(564454), CD86-PE-Cy (560582), and CD206-
Alexa Fluor 647 (565250) (BD Biosciences, 
San Jose, CA, USA), for 30 minutes in the dark 
at 4°C. Cells were then washed by 1% FBS in 
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PBS to remove antibodies. Cells were centri-
fuged at 300 x g for 5 minutes and supernatant 
fractions were completely removed. Cell sam-
ples were re-suspended in 200 μL 1% FBS in 
PBS and analyzed by flow cytometry, using a BD 
AccuriTM C6 Cytometer.

Enzyme-linked immunosorbent assay (ELISA) 

Plasma was collected from control and DHA 
groups. Macrophage polarization related to 
cytokine concentrations (IFN-γ, IL-12, IL-4 and 
IL-10) was detected, with or without LPS chal-
lenge. In the without LPS group, whole blood 
was collected and levels of IFN-γ, IL-12, IL-4, 
and IL-10 were collected. For the LPS-
challenged, mice were intraperitoneally inject-
ed with LPS (100 µg per mice). Blood samples 
were collected at 3, 6, and 48 hours after the 
LPS challenge. Whole blood was centrifuged to 
separated plasma and blood cells. Next, 3-hour 
plasma samples were used to detect concen-
trations of IL-10, 6-hour plasma samples were 
used for IFN-γ and IL-12, and 48-hour plasma 
samples were used for IL-4. Cytokine concen-
trations were measured in all plasma samples 
using mouse-specific enzyme-linked immuno-
sorbent assay (ELISA) kits (eBioseience, San 
Diego, CA, USA).

Statistical analysis

Data are expressed as mean ± SEM. A paired 
t-test or one-way ANOVA, followed by Tukey’s 
multiple comparison test, was used for com-

parisons among groups. Means indicated by 
different letters are different at P ≤ 0.05.

Results

Pre-treatment with DHA reduced expression of 
M1 markers in THP-1 cells

To understand the effects of DHA in macro-
phage classic polarization (M1), this study pre-
treated native THP-1 cells with 100 µM DHA for 
24 hours and induced differentiation by 100 
nM PMA. After 48 hours, native THP-1 cells dif-
ferentiated into mature macrophages. DHA pre-
treated macrophages expressed lower M1 
markers (including IL-12, THF-α, IL-6, NOS2, 
and TLR4) than the control group (Figure 1A-E).

Pre-treatment with DHA increased expression 
of M2 and Mreg markers in THP-1 cells

To understand the effects of DHA on macro-
phage alternative polarization (M2 and Mreg), 
this study pre-treated native THP-1 cells with 
100 µM DHA for 24 hours and induced polariza-
tion by 100 nM PMA. After 48 hours, native 
THP-1 cell differentiated into mature macro-
phages. CD206 (mannose receptor) and CD163 
are the cell surface markers of M2 and Mreg 
[22]. DHA pre-treated macrophages expressed 
higher CD206 and CD163 than control macro-
phages (Figure 2A, 2B). DHA pre-treated mac-
rophages expressed higher M2 markers (includ-
ing IL-4 and Arginase 1) than the control group 
(Figure 2C, 2D). Moreover, DHA enhanced 

Figure 1. Pre-treatment with DHA re-
duced expression of M1 markers in 
THP-1 cells. After pre-treatment with 
DHA, native THP-1 cells were differ-
entiated into macrophages with PMA. 
Relative mRNA expression of (A) IL-12 
(B) TNF-α (C) IL-6 (D) NOS2 (E) TLR4. 
Data in figures (A to E) are indicated 
as mean ± SEM and were analyzed by 
t-test. * = p ≤ 0.05, ** = P ≤ 0.005, 
*** = p ≤ 0.0005.
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expression of Mreg markers (including IL-10, 
arginase 2, and LIGHT) (Figure 2E-G).

DHA decreased M1 and increased M2-like 
macrophages in mice

To reveal the effects of DHA on macrophage 
polarization in mice, this study administrated 
36 mg/kg DHA to mice by oral gavage for 6 
weeks, analyzing classic macrophages or M1 
(CD11b+/CD86+) and alternative macrophages 
or M2-like (CD11b+/CD206+). Gate R1 was built 

levels of IL-4 and IL-10, whether challeng- 
ed with LPS or not (Figure 4A-D). Present da- 
ta shows that DHA decreased secretion of 
M1-stimulating cytokines, IFN-γ, and IL-12, 
while increasing secretion of M2 and Mreg-
stimulating cytokines, IL-4 and IL-10.

Discussion

Autoimmune diseases, including type 1 diabe-
tes, rheumatoid arthritis, systemic lupus ery-
thematosus, and inflammatory bowel disease, 

Figure 2. Pre-treatment with DHA increased expression of M2 and Mreg 
markers in THP-1 cells lines. After pre-treatment with DHA and naive THP-1, 
cells were differentiated into macrophages with PMA. Relative mRNA expres-
sion of (A) CD206 (B) CD163 (C) IL-4 (D) Arginase 1 (E) IL-10 (F) Arginase 2 
(G) LIGHT. Data in figures (A to G) are indicated as mean ± SEM and were 
analyzed by t-test. * = p ≤ 0.05, ** = P ≤ 0.005, *** = p ≤ 0.0005.

separating monocytes from 
mice leukocytes by cell size (x 
axis/FSC-A) and granularity (y 
axis/SSC-A). Gate R1 con-
tained 95.7% CD11b positive 
cells (Figure 3A, 3B). M1 and 
M2-like cells were evaluated 
using the R1 gate (macro-
phage) and separated bas- 
ed on relative expression lev-
els of CD86 and CD206. 
CD11b+ CD86+ and CD11b+ 
CD206+ likely represent M1 
and M2-like cells, respectively 
(Figure 3C). Data showed that 
DHA decreased the CD11b+ 
CD86+ cells (classic macro-
phages) and increased CD- 
11b+ CD206+ cells (alternative 
macrophages) in mice (Figure 
3D, 3E).

DHA decreased M1-stimulat-
ing cytokines and increased 
M2/Mreg-stimulating cyto-
kines in mice

Monocytes can differentiate 
into multiform macrophages 
by specific cytokine stimulus. 
The present study detected 
plasma levels of M1 (IFN-γ and 
IL-12), M2 (IL-4), and Mreg (IL-
10) stimulating cytokines in 
mice. Without LPS-challenge, 
IFN-γ and IL-12 could not be 
detected in the plasma (Figure 
4A, 4B). After LPS injection, 
levels of plasma cytokines in- 
creased. Administration of 
DHA decreased plasma levels 
of IFN-γ and IL-12 (Figure 4A, 
4B). DHA increased plasma 
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are caused by abnormal immune responses 
that attack healthy tissues [23, 24]. More 
importantly, autoimmune diseases have 
increased dramatically, worldwide, after World 
War II. The National Institute of Health (NIH) 
has estimated that more than 23.5 million peo-
ple have an autoimmune disease in the United 
States [23]. Causes of autoimmune disease 
are complex, but imbalance of macrophages 
plays an important role [25-27]. M1 macro-
phages play a critical role in autoimmune dis-
ease by producing pro-inflammatory cytokines 
and NO, which induce cell apoptosis and 
enhance the chemotaxis of autoantigen-specif-
ic T-cells [28]. In contrast, M2 macrophages 
and Mreg macrophages have the ability of 
decreasing inflammation and autoimmune dis-
ease by increasing anti-inflammatory cyto-
kines, inducing immunosuppressive T-cells 
(Treg), and enhancing tissue remodeling [25, 
28, 29]. Therefore, inhibition of M1 macro-
phages and induction of M2 and Mreg macro-
phages may have a potential role in anti-inflam-
matory and autoimmune disease therapeutics 
[4]. 

DHA has a variety of health benefits. Passive 
studies have shown that administration of DHA 
or n-3 PUFA improves and retards autoimmune 
diseases [30-32]. The current study demon-
strated that DHA pre-treatment of THP-1-
derieved macrophages changed the character-
ization of these cells (Figures 1 and 2). (1) Cell 
surface markers: DHA increased expression of 
M2/Mreg cell surface markers, CD206 and 
CD163, and decreased M1 marker TLR4. (2) 
Pro-/anti-inflammatory cytokines: DHA decrea- 
sed expression of pro-inflammatory cytokines 
(TNF-α and IL-6) and increased expression of 
anti-inflammatory cytokines (IL-4 and IL-10). (3) 
Metabolic enzymes: Classic macrophages (M1) 
produce NO from arginine through NOS2 
against pathogens. However, M2/Mreg produc-
es ornithine from arginine through arginase1/2. 
DHA decreased expression of NOS2 and 
increased Arginase 1/2. (4) Stimulating cyto-
kines: M1 macrophages secrete IL-12 to affect 
Th-1 cells, while M2 macrophages secrete IL-4 
to affect Th-2 and Mreg macrophages secrete 
IL-10 to affect Treg. Present data reveals that 
pre-treated THP-1 decreased expression of 

Figure 3. Administration of DHA decreased the percentage of M1 and increased the percentage of M2-like cells 
in mice. Flow cytometry was used to determine percentages of M1 and M2-like cells. Flow cytometric analysis for 
surface CD11b, CD86, and CD206 expression. (A) Gate R1 was built separating monocytes from mice leukocyte by 
cell size (x axis) and granularity (y axis). (B) Gate R1 contained 95.7% CD11b positive cells. (C) M1 and M2-like cells 
were evaluated using the R1 gate (macrophage) and separated based on relative expression levels of CD86 and 
CD206. CD11b+ CD86+ and CD11b+ CD206+ likely represent M1 and M2-like cells, respectively. CON were macro-
phages from control group mice; DNA were macrophages from DHA group mice. (D) percentage of CD11b+ CD86+ 
cells (E) CD11b+ CD206+ cells. Data in figures (D to E) are expressed as mean ± SEM and were analyzed by t-test. 
* = p ≤ 0.05, ** = p ≤ 0.005.
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IL-12 and increased expression of IL-4 and 
IL-10. (5) Mreg markers: LIGHT is a Mreg spe-
cific marker, providing co-stimulatory signals 
for T-cells. DHA increased expression of LIGHT. 
Moreover, the present murine experiment 
exhibited that administration of DHA decreased 
the classic macrophage population and in- 
creased the alternative macrophage popula-
tion in blood (Figure 3). Macrophage polariza-
tion is regulated by the microenvironment pro-
duced cytokines. In the blood of the DHA-treated 
mice, levels of M1 stimulating cytokines (INF-γ) 
and Th-1 stimulating cytokines IL-12) were 
reduced and M2/Th2 stimulating cytokines (IL-
4) and Mreg/Treg stimulating cytokines (IL-10) 
were increased (Figure 4). 

In conclusion, the present study strengthens 
the viewpoint that DHA has the ability to modu-
late the immune system, noting that THP-1 
retains plasticity under PMA treatment induced 
differentiation. In THP-1-derived macrophages, 
pre-treatment of DHA reduced expression of 
M1 and increased M2/Mreg markers. Fur- 
thermore, the present murine experiment 
exhibited that administration of DHA decreased 
M1 macrophages and increased M2-like mac-
rophages, while decreasing M1-related cy- 
tokines and increasing M2/Mreg related  
cytokines in healthy subjects. These findings 
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Supplementary Table 1. Primers sets for quantitative real-time PCR. List of human primers used in 
the present study
Gene Accession Forward (5’→3’) Reverse (5’→3’)
IL-12 NM_002187 GGCCAGTACACCTGTCACAA CTGATTGTCGTCAGCCACCA
TNF-α NM_000594 AGCCTCTTCTCCTTCCTGAT AAGATGATCTGACTGCCTGG
IL-6 NM_000600 AATGAGGAGACTTGCCTGGTG CTGGCATTTGTGGTTGGGTC
NOS2 NM_000625 TGAACTACGTCCTGTCCCCT CTCTTCTCTTGGGTCTCCGC
TLR4 NM_003266 CGTGGAGACTTGGCCCTAAA GGGAGGTTGTCGGGGATTT
CD206 NM_002438 AACAGTCAGTCAAGCCCAGG AGGACAGACCAGTACAATTCAG
IL-4 NM_000589 TCTTCCTGCTAGCATGTGCC TGTTACGGTCAACTCGGTGC
CD163 NM_004244 CGGCTTGCAGTTTCCTCAAGA GGCCTCCTTTTCCATTCCAGAAA
LIGHT NM_003807 TGGCGTCTAGGAGAGATGGT GAGTTGGCCCCTGTGAGATG
IL-10 NM_000572 CTAACCTCATTCCCCAACCA GTAGAGACGGGGTTTCACCA
Arginase1 NM_000045 ACTTAAAGAACAAGAGTGTGATGTG CACCAGGCTGATTCTTCCGT
Arginase2 NM_001172 TGCCCAGACCTTTGTGTTGT GGTGGCCAACTGAGGATTGA
β-actin NM_001101 GAAGATCAAGATCATTGCTCCTC CTAAGTCATAGTCCGCCTAGAAG


