Review Article

Best strategy of thromboembolic prophylaxis after knee arthroscopy: a systematic review and meta-analysis of 9 randomized trials

Zhen Lyu1, Bing Li1, Xiaofei Zhang1, Bo Li1, Xinglong Ma2, Jinxing Ma2, Jun Liu1

1Department of Joint Surgery, Tianjin Hospital, Tianjin, China; 2Orthopedic Institute of Tianjin, Tianjin, China.

*Equal contributors.

Received March 6, 2018; Accepted October 9, 2018; Epub January 15, 2019; Published January 30, 2019

Abstract: Introduction: Currently, prevention of deep vein thrombosis after arthroscopic knee surgery is in dispute. The aim of this study was to conduct a meta-analysis of all randomized controlled trials published, determining whether anticoagulation should be performed after knee arthroscopies (KA).

Materials and methods: A comprehensive literature search was conducted through October 24, 2017. PubMed, Embase, Web of Science, Cochrane Library, CISCOM, CINAHL, and Google Scholar databases were searched. The aim was to determine the relationship between the use of different chemical anticoagulation strategies and the risk of deep venous thrombosis after knee arthroscopies. A meta-analysis of pooled and stratified data was performed and assessed using Mantel-Haenszel fixed effects models. Results: A total of nine randomized clinical trials met the eligibility criteria and were included for quantitative analysis. Thromboprophylaxis was shown to significantly decrease the risk of symptomatic DVT ($P = 0.914$, 95% CI = 0.10-0.22) and asymptomatic distal DVT ($P = 0.107$ 95% CI = 0.18--0.45) after KA. There was no significant association between anticoagulation drugs and risk of bleeding events ($P = 0.092$, 95% CI = 0.56-1.06).

Use of LMWH after KA may significantly reduce the risk of distal asymptomatic DVT. Three kinds of chemical prevention measures can reduce incidence of symptomatic DVT, without increasing the risk of bleeding events. Conclusion: The present study confirms that thromboprophylaxis after arthroscopic surgery is significant, without increasing the risk of bleeding events. Oral antithrombotic drugs are a better prophylactic strategy than subcutaneous injections of LMWH.

Keywords: Thromboprophylaxis, LMWH, rivaroxaban, aspirin, knee arthroscopy, meta-analysis

Introduction

Knee arthroscopy (KA) is the most common orthopedic procedure performed on a day-care setting, with more than 5 million procedures per year in Western countries [1, 2]. Venous thromboembolism (VTE) is a common and clinically relevant complication to major orthopedic surgery. However, it has been considered rare in the setting of elective knee arthroscopy based on reported retrospective articles [3-5]. Some reports have reported that incidence of objectively proven deep-vein thrombosis (DVT) after KA ranges from 0.6% to 18% (symptomatic DVT 0% to 1%) [6-8], without thrombus prophylaxis [9-12]. Recently, a large population case-control study reported a 18-fold increased risk of DVT in the first three months following KA [13]. Common clinical symptoms of DVT include unilateral leg swelling, skin temperature rise, or positive Homan examination. The most serious clinical manifestation is the emergence of fatal pulmonary embolism (PE), which is difficult to diagnostic.

Whether drug therapy can reduce the risk of VTE has been the focus of much attention. Some randomized trials have demonstrated efficacy in this regard. Marlovits [7] found that the use of subcutaneous low molecular weight heparin (LMWH) can reduce incidence of DVT after arthroscopic surgery to 2.8%, while incidence of the control group was 41.2%. Michot [14] reported that incidence of DVT can be effectively reduced to 1.5% using LMWH, while incidence of the control group was 15.6%. Compared with subcutaneous low molecular weight heparin, aspirin can be given orally, with...
Table 1. Characteristics of included studies in this meta-analysis

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Experiment Group</th>
<th>Control Group</th>
<th>Intervention (dose first dose after surgery)</th>
<th>Type of study</th>
<th>Diagnoses of DVT</th>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delis [12]</td>
<td>2001</td>
<td>45.0</td>
<td>27.6</td>
<td>Oral Aspirin 300 mg daily 7 days</td>
<td>RCT</td>
<td>CFD</td>
<td>118 days</td>
</tr>
<tr>
<td>Kaye [31]</td>
<td>2015</td>
<td>46.0</td>
<td>27.2</td>
<td>Oral Aspirin 325 mg daily 14 days</td>
<td>RCT</td>
<td>Ultrasound</td>
<td>7/28 days</td>
</tr>
<tr>
<td>Camporese [32]</td>
<td>2016</td>
<td>44.9</td>
<td>27.6</td>
<td>Oral Rivar-oxaban 10 mg daily 9 hours</td>
<td>RCT</td>
<td>CCDU</td>
<td>90 days</td>
</tr>
<tr>
<td>Munoa [33]</td>
<td>2012</td>
<td>52.4</td>
<td>27.8</td>
<td>Oral Rivar-oxaban 10 mg daily 6-8 hours</td>
<td>RCT</td>
<td>__</td>
<td>30/90 days</td>
</tr>
<tr>
<td>Marlovits [14]</td>
<td>2007</td>
<td>29.9</td>
<td>23.7</td>
<td>Subcutaneous LMWH 40 mg daily 3-8 days</td>
<td>RCT</td>
<td>MRV</td>
<td>28 days</td>
</tr>
<tr>
<td>Camporese 1 [34]</td>
<td>2008</td>
<td>41.9</td>
<td>25.3</td>
<td>Subcutaneous LMWH 3800 IU anti-Xa 7 days</td>
<td>RCT</td>
<td>Ultrasound</td>
<td>90 days</td>
</tr>
<tr>
<td>Camporese 2 [34]</td>
<td>2008</td>
<td>42.5</td>
<td>25.5</td>
<td>Subcutaneous LMWH 3800 IU anti-Xa 14 days</td>
<td>RCT</td>
<td>Ultrasound</td>
<td>90 days</td>
</tr>
<tr>
<td>Wirth [35]</td>
<td>2001</td>
<td>37.6</td>
<td>26.1</td>
<td>Subcutaneous LMWH 1750 IU anti-Xa 14 days</td>
<td>RCT</td>
<td>Ultrasound</td>
<td>90 days</td>
</tr>
<tr>
<td>Michot [7]</td>
<td>2002</td>
<td>42.0</td>
<td>26.2</td>
<td>Subcutaneous LMWH 2500 IU anti-Xa 14 days</td>
<td>RCT</td>
<td>Ultrasound</td>
<td>12/31 days</td>
</tr>
</tbody>
</table>

RC: Randomized controlled trial; CFD: Colour Flow duplex; CCDU: colour-coded Doppler Ultrasound; MRV: Magnetic Resonance Venography.
Thromboembolic prophylaxis after knee arthroscopy

Although the risk of deep venous thrombosis (DVT) after knee arthroscopy is a real problem, some studies have suggested that chemical prophylaxis could reduce the risk of VTE. Some articles have recommended the use of antithrombotic drugs [25] after arthroscopic knee surgery to prevent thrombosis, because of a lack of medicine-based evidence. Several countries and international organizations, including the American College of Chest Physicians, recommend that young low-risk patients after knee arthroscopic surgery do not use anticoagulant drugs. Similarly, the American Association of Orthopedic Surgeons has not objected to the use of preventative drugs after knee arthroscopies. The present meta-analysis analyzed the incidence of DVT, bleeding events, and other aspects, comparing a variety of anticoagulant drugs on the prevention of deep vein thrombosis. The aim was to provide evidence-based medical evidence for the development of clinical standard guidelines.

Methods

Data sources and searches

A comprehensive literature search was conducted up through October 24, 2017 using PubMed, Embase, Web of Science, Cochrane Library, CISCOM, CINAHL, and Google Scholar databases. Previous meta-analyses and abstracts/presentations from annual meetings about antithrombotic therapy and prevention of thrombosis (American College of Chest Physicians Evidence-Based Clinical Practice Guidelines) were also screened. All research articles published with a combination of the following search terms were matched: “Aspirin”, “Factor Xa inhibitors”, “Low molecular weight

Table 2. Results of anticoagulation VS. control groups

<table>
<thead>
<tr>
<th></th>
<th>P value</th>
<th>RR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptomatic DVT</td>
<td>0.914</td>
<td>0.14</td>
<td>(0.10--0.22)</td>
</tr>
<tr>
<td>Asymptomatic Distal DVT</td>
<td>0.107</td>
<td>0.28</td>
<td>(0.18--0.45)</td>
</tr>
<tr>
<td>Bleeding events</td>
<td>0.092</td>
<td>0.77</td>
<td>(0.56-1.06)</td>
</tr>
</tbody>
</table>

Figure 1. Workflow diagram of the study selection process from initial search to included studies. Adapted from PRISMA statement 2009 (http://www. Prisma-statement.org) [30].
Thromboembolic prophylaxis after knee arthroscopy

heparin”, “thrombosis”, “knee arthroscopy”, and “Randomized trials”. No language, date, or other publication restrictions were imposed. The most updated/inclusive data on each study was used for abstraction. Reference lists of relevant studies were also scanned.

Selection criteria and quality assessment

Inclusion criteria were: 1) Human studies; 2) RCTs comparing the effect and safety of a single anticoagulant drug to a control group with a placebo or no treatment; 3) Studies reporting re-specified outcomes of interest; and 4) RCTs concerning post-knee arthroscopic surgery.

Exclusion criteria were: 1) Non-randomized registries; 2) Several anticoagulants were used in combination of the experimental group; 3) The control group used anticoagulants; 4) Upstream administration by study design of another anticoagulant prior to randomization; and 5) Follow-up was not relevant to the meta-analysis.

The present study used the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to evaluate the quality of included studies. Details of evidence profiles for outcomes are presented in Table 2. GRADE level of evidence was high for symptomatic deep vein thrombosis and asymptomatic...
Quality assessment of studies was conducted using QUADAS-2 tool criteria. One study was considered to be at high risk of bias. Eight studies had an unclear risk of bias. High risk of bias was based on the use of blinding of participants and personal reasons (performance bias). Details of the risk of bias for each study are presented in Figure 2.

Statistical analysis

To examine the strength of anticoagulant drugs preventing thrombosis after knee arthroscopy surgery, pooled odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were estimated for each study. Subgroup analysis was also performed by drug (defined as aspirin, rivaroxaban, and LMWH) and by the method (defined as oral and subcutaneous) for thrombosis with anticoagulant drugs.

Departure of frequencies of thrombosis with anticoagulant drugs after knee arthroscopy surgery was calculated by Chi-squared tests for the controls. Forest plots were created to visually assess major contributors to heterogeneity. Possible publication bias was tested using Begg’s [26] funnel plot and Egger’s [27] regression test (P < 0.5 indicates statistically significant publication bias). Sensitivity analysis was performed to examine the impact on individual studies. Odds ratios (ORs) and a 95% confidence intervals (95% CIs) were used to determine whether a fixed or random-effects model [28] would be applied. For p values of 0.05 and 50%, between-study heterogeneity was considered to be significant and a random-effects model was used to calculate the OR. If no significant heterogeneity was observed, a fixed-effects model was used (DerSimonian-Laird method). \(I^2 \) statistics was employed to quantify inter-study variability, with larger values suggesting an increased degree of heterogeneity [29].

All statistical analyses in this study were performed using the statistical software package Stata (Stata Statistical Software: release 11.0 College Station, TX, StataCorp. LP).

Results

Study search

Figure 1 presents a detailed summary of the study selection process. Of the 87 articles screened, 79 were excluded according to exclusion criteria. A total of 9 randomized clinical trials met the eligibility criteria and were included for quantitative analysis.

Study characteristics

Study characteristics of included studies are presented in Table 1. Of the randomized controlled trials, two used aspirin, two used rivaroxaban, and five used LMWH. Each randomized controlled trial was reviewed. Data was extracted for the following elements: author, year, age, gender, BMI, intervention (dose first dose after surgery), type of study, diagnoses as DVT, and follow up. Prophylactic agents were as follows: 1) Aspirin (oral aspirin 300 mg daily); 2) Rivaroxaban (oral rivaroxaban 10 mg daily); and 3) Low molecular-weight heparin (LMWH) (1. Subcutaneous LMWH 3000-3800 IU anti-Xa 7 days, 2. Subcutaneous LMWH 1750-2500 IU anti-Xa14 days).

Symptomatic DVT

Nine randomized controlled trials, including 2,931 participants, compared anticoagulation drugs with placebo or no treatment. Anticoagulation drugs were associated with a signifi-
Thromboembolic prophylaxis after knee arthroscopy

Asymptomatic distal DVT

In nine randomized controlled trials, including 3,023 participants, anticoagulation drugs were associated with a significant decrease in the risk of asymptomatic distal DVT (RR = 0.28, 95% CI 0.18 to 0.45 P = 0.107; I² = 39.1%; Table 2; Figure 2).

Bleeding events

Since an aspirin experiment did not report a bleeding event, a total of eight studies were included in this meta-analysis. There was no significant association with anticoagulation drugs and risk of bleeding events (RR = 0.77, 95% CI 0.56 to 1.06, P = 0.092; I² = 42.9% Table 2; Figure 2).

Subgroup analysis

Subgroup analysis, according to the type of anticoagulant drugs and routes of administration, was performed (Table 3). Three kinds of anticoagulation drugs were associated with a significant decrease in risk of symptomatic DVT. Aspirin and rivaroxaban showed no significant decrease in the risk of asymptomatic distal DVT. LMWH significantly decreased the risk of thrombosis. Oral anticoagulation drugs did not decrease thrombosis risk while subcutaneous anticoagulation drugs did decrease thrombosis risk (Table 3; Figure 3). There was no significant association for anticoagulation drugs and risk of bleeding events in oral and subcutaneous groups (Table 3).

Heterogeneity and publication bias

Publication bias causes a disproportionate number of studies with positive results, reducing accuracy and reliability of meta-analyses.
There was no evidence of publication bias found in the present meta-analysis (Figure 4).

Sensitivity analyses for pooled studies

Sensitivity analysis concerning the association of anticoagulation drugs and thrombosis risk was performed to assess the impact of each study on pooled ORs. Results suggest that pooled ORs were not altered by the omission of any individual study (Figure 5).

Discussion

According to pooled statistical analysis, incidence of symptomatic deep venous thrombosis (DVT) in patients receiving a knee arthroscopy was highly dependent on the use of the anticoagulant prophylactic treatment. Specifically, incidence of DVT was 12.1% with no treatment and only 1.5% with anticoagulant prophylactic treatment. This equated to a reduction of 10.6% in patients developing DVT. These findings were in accord to those reported by Adele in 2011 [36]. Using aspirin, the incidence of symptomatic DVT after knee arthroscopy was reduced to 0.6%, while that of the control group was 4.3%. Regarding aspirin, both rivaroxaban and low molecular weight heparin (LMWH) significantly reduce incidence of symptomatic DVT after knee arthroscopies, 0.6-10% less than controls. It was concluded that anticoagulant therapy after knee arthroscopies can indeed reduce incidence of DVT. The present study revealed that incidence of symptomatic DVT in patients treated with aspirin and rivaroxaban was 0.6%. In contrast, it was 1.7% with LMWH. The effects of oral anticoagulants seemed to be better with thromboembolic prophylaxis, only in terms of incidence. However, there is a lack of randomized controlled trials to support this conclusion. In general, symptomatic DVT after knee arthroscopy is rare [7, 14, 32-35]. To the best of our knowledge, all current publications confirm that LMWH can prevent thrombosis. There are no reports on thromboprophylaxis of oral anticoagulants. Low-cost LMWH not only reduces thromboembolic events during knee arthroplasty but also during knee arthroscopy. However, LMWH requires subcutaneous injections and is, therefore, only cost-effective if the patient or caregiver can inject the drug at home [37, 38]. Oral anticoagulants could be used as an alternative.

Clinical manifestations of asymptomatic distal DVT include unilateral leg swelling, skin tem-
Thromboembolic prophylaxis after knee arthroscopy

Figure 5. Sensitivity analysis of summary odds ratio coefficients on incidence of DVT after KA and anticoagulant prophylaxis with susceptibility to osteoarthritis under the dominant mode.

Temperature rise, redness, and a positive Homan examination, which can be checked and confirmed by color ultrasonography [32]. Incidence of asymptomatic DVT in the anticoagulant-treated group was 1.2%, 3.8% lower than the control group of patients that did not receive treatment (Table 2). Williams reported a higher detection rate of 3.5% for asymptomatic distal DVT within two weeks after knee arthroscopy without anticoagulant therapy [8]. The discrepancy between these studies is likely due to differences in follow-up times, as the average follow-up time in the literature is 30 days. Compared to the control group, LMWH had a significant eightfold lower incidence of asymptomatic distal DVT in patients that received anticoagulant therapy (0.9%) (P = 0.939, 95% CI 0.10 to 0.36). Results remained ambiguous on whether the two oral anticoagulants, aspirin and rivaroxaban, can reduce incidence of asymptomatic distal DVT since no significant differences were observed between control and treatment groups.

Minor complications caused by antithrombotic drugs, such as minor bleeding, wound hematoma, and even re-operation due to bleeding [39], are unpredictable [31]. Wirth [35] reported a higher incidence of bleeding events in the experimental group, compared to the control group. The present study, however, found no statistically significant correlation between the use of anticoagulant prophylactic treatment and bleeding incidence.

Conclusion

In conclusion, this is the first meta-analysis examining the use of anticoagulants to prevent DVT after knee arthroscopies. The use of anticoagulants must balance the prevention of thrombosis with the potential for complications. The present study confirmed that anticoagulant treatment after arthroscopic surgery significantly contributes to the prevention of thrombosis without increasing the risk of bleeding events. Current adopted prevention strategies require daily subcutaneous injections of LMWH. However, Munoa [33] reported that, post-surgery, patients often did not receive their anticoagulant treatment before the prescribed LMWH date. Several studies have reported [40-43] a lower risk and better safety performance associated with the use of aspirin, compared to other traditional antithrombotic agents after knee and hip replacement surgery. The same conclusions were drawn using a randomized controlled trial with aspirin for the prevention of thrombus after knee arthroscopy. Furthermore, a rigorous double-blind and randomized controlled study showed that the use of rivaroxaban after knee arthroscopies significantly reduced the risk of DVT, without increas-

Limitation

Even though the present meta-analysis has demonstrated that anticoagulant therapy is beneficial after knee arthroscopies, this study only included nine randomized controlled trials. Also, there were only four studies regarding rivaroxaban or aspirin use and the strength of evidence for subgroup analyses was not high. Moreover, the use of anticoagulant drugs differed between studies but were within the scope of clinical recommendations. However, this may have led to heterogeneity between groups. Moreover, the duration of follow-ups in each study was different. For LMWH and rivaroxaban, the durations were the same but they were significantly different from the two studies using aspirin. Fortunately, the results of all included studies agreed.
Thromboembolic prophylaxis after knee arthroscopy

...ing the risk of bleeding [44]. It was believed that oral administration is more appropriate than subcutaneous administration because it allows for self-management of the drug, ensuring the safety of the prescription. In general, symptomatic DVT after knee arthroscopies is rare and there is no requirement to use anticoagulant therapy for low-risk patients. However, it is recommended that oral anticoagulation is used for high-risk patients to prevent DVT.

Acknowledgements

This research supported by grants from the Health Bureau Science and Technology Fund of Tianjin (No. 2013KZ063) and Health and Family Planning Fund of Tianjin (No. 14KG123).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Jun Liu, Department of Joint Surgery, Tianjin Hospital, 406 Jiefang Street, Hexi District, Tianjin, China. Tel: +86 15602176472; E-mail: doctorliutj@163.com

References

[38] Davies LM, Richardson GA, Cohen AT. Economic evaluation of enoxaparin as postdischarge prophylaxis for deep vein thrombosis in elec-
Thromboembolic prophylaxis after knee arthroscopy