Original Article

Overexpression of CD133 confers poor prognosis in colorectal cancer: a systematic review and meta-analysis

Rui Li1, Hongli Dong2, Jiabin Zhu1, Hongkui Yi1, Shengyu Liu1

1Department of Hepatobiliary Surgery, The People’s Hospital of China Medical University, Shenyang, China; 2Department of Social Medical Service, Shengjing Hospital of China Medical University, Shenyang, China

Received February 27, 2018; Accepted October 10, 2018; Epub February 15, 2019; Published February 28, 2019

Abstract: Objective: CD133 is considered a useful marker to identify the so-called cancer stem cells in colorectal cancers (CRCs) and its expression has been shown to have prognostic significance in CRC patients. However, previous research studies related to CD133 expression and CRC has inconsistent results. Thus, we comprehensively reviewed the observational studies on the role of CD133 expression in patients with CRC. Methods: A systematic literature search for relevant articles published from 2010 to 2015 was conducted in PUBMED and EMBASE digital databases. A random effects model was used to quantify effect sizes, subgroup analysis for identifying potential moderating variables and Egger’s test for publication bias. Results: A total of twenty-eight studies were included in this study. The results of the study demonstrated that CRC patients with high level of CD133 expression suffered the poor overall survival (RR = 0.72, 95% CI 0.58 to 0.86) and disease free survival (RR = 0.68, 95% CI 0.58 to 0.79). In subgroup analyses, different ethnicities, sample size, research technique and adjunctive therapy confirmed the stability of the relationships, patients with high level of CD133 expression got a significant poor prognosis. Besides, the survival benefit receiving adjuvant therapy appeared to be confined to those patients with low level of CD133 expression. Conclusions: Our results indicate that CD133 may have a potential predictive role of poor prognosis, and be a promising tool in the selection of adjuvant therapy for CRC patients. In consideration of the limitations and flaws of included studies, better designed RCTs are still in need to comprehensively evaluate the role of CD133.

Keywords: Cancer stem cell, CD133, colorectal cancer, meta-analysis

Introduction

Cancer stem cells (CSCs) are cancer cells that possess characteristics associated with normal stem cells, specifically the ability to give rise to all cell types found in a particular cancer sample. CSCs were first identified by John Dick in acute myeloid leukemia in the late 1990s. Since the early 2000s they have been an intense cancer research focus, the CSC hypothesis has fundamental implications for cancer biology, in addition to clinical implications for cancer risk assessment, early detection, prognostication, and prevention. The hypothesis suggests that upon CSC elimination, cancer could regress due to differentiation and cell death, which has greatly changed the concept of cancer therapy. They are also believed to play a pivotal key role in resistance to chemotherapy and radiotherapy [1, 2]. Thus, identification and characterization of CSCs could lead to development of directed and more effective treatments for cancer.

Reliable markers that identify CSCs will pave the way to better understanding of signaling pathways. CSCs represent a small subpopulation of cells within a tumor that express cell surface markers including CD133, CD44 and CD24 [3]. Among these makers, CD133 is one of the most important stem cell markers in many solid cancers such as brain tumors [4], colon cancer [5], lung cancer [6], liver cancer [7] and prostate cancer [8]. Furthermore, CD133 was expressed exclusively by stem-like cells within tumors, but was rapidly down-regulated in their progeny, illuminating that CD133+ tumor cells could be regarded as CSCs [9, 10].
At present, colorectal cancer (CRC) is among the most common malignant disease in the western world, whereas cancers of the upper gastrointestinal tract and liver are more predominant in the East. Moreover, many Asian countries have experienced a two to four fold increase in the frequency of CRC during the past few decades [11, 12]. Recently, O’Brien CA, et al. [13] reported that CD133-positive cells separated from colorectal cancer exhibited the C-IC properties of self-renewal and high tumorigenic potential. Despite a variety of basic and clinical studies on CD133 expression and CRC, using CD133 as a positive marker for CSCs generated conflicting results. Therefore, it is of virtual importance to update these findings, analyzing the association between CD133 expression and CRC. Our study may provide further insight into the anticancer mechanisms of therapeutic resistance and tumor regrowth.

Materials and methods

Literature search

The protocol for this systematic review was based on the PRISMA statement [14]. We performed systematic literature searches of PubMed, Embase and Cochrane databases for possible publications. Reports cited the references identified in this systematic review and relevant reviews were also searched to include potentially missed studies. The following terms were used in the search procedure: ('colorectal cancer' or 'colon cancer' or 'rectal cancer' or 'colorectal adenocarcinoma' or 'colon adenocarcinoma' or 'rectal adenocarcinoma') AND ('CD133' or 'prominin-1' or 'AC133'). The retrieved studies were carefully examined to exclude potential duplicates or overlapping data. Titles and abstracts of articles selected from the initial search were first scanned, and then full papers of potential eligible studies were reviewed.

Study selection

Eligibility of studies for inclusion was assessed independently by two investigators. Studies were eligible for inclusion if all the following criteria were fulfilled: (1) The study evaluated the correlation between CD133 expression and clinical outcomes of CRC. (2) Diagnosis of CRC was proven by histopathologic analysis. (3) Studies of CD133 overexpression based on CRC tissue (via either biopsy or surgical), rather than serum or any other kinds of specimen were included. (4) The data provided must be sufficient to estimate either disease free survival (DFS) or overall survival (OS). If the data sets overlapped or were duplicated, we only extracted the most detailed or recent information. Only studies published in English were included.

Excluding criteria

Abstracts, letters, editorials, expert opinions, reviews without original data, case reports, and studies lacking control groups were excluded. The following studies or data were also excluded: (1) Outcomes and parameters of patients were not clearly reported; (2) It was impossible to extract the appropriate data from the published results; and (3) There was an overlap between authors or centers in the published literature.

Data extraction and quality assessment

Data was extracted by two of the authors independently using the same standardized form. The fields extracted included first author, year of publication, area of research, number of patients, research techniques, and level of CD133 expression. For the articles with the same population resources or overlapping data sets, the paper which included the largest population or contained more useful information was included. In accordance with the Newcastle-Ottawa Quality Assessment Scale (NOS), the quality assessment of all included studies were performed by 2 reviewers independently. Any disagreement was resolved by a third reviewer. The scores of each study ranged between 1 and 9, and studies with the scores > 6 were recognized as of high quality. All studies in this study are higher than 6 scores.

Statistical analysis

All statistical tests were two-sided, and all statistical analyses were carried out with SPSS 16.0 and Stata Statistical Software 13.0. A random effects model was used to estimate pooled RRs in order to take into account the heterogeneity of the risk estimates and to provide more conservative estimates compared with the fixed effects model. Statistical heterogeneity between studies was assessed with the chi-square statistic and quantified by I², a statistic that represents the percentage of total varia-
CD133 and colorectal cancer

Quantitative data synthesis

The results of the quantitative synthesis of the data were summarized in Table 2. Individuals with high level of CD133 expression were significantly associated with increased risk of CRC, the relative risk values for OS and DFS were 0.72 (95% CI: 0.58-0.86) and 0.68 (95% CI: 0.58-0.79), respectively, compared with low level (Figures 2, 3).

The results of subgroup analyses for the association between CD133 expression and OS or DFS are demonstrated in Table 2. In subgroup analyses, different ethnicities, sample size, research technique and adjunctive therapy confirmed the stability of the relationship (Supplementary Figures 1, 2, 3, 4, 5 and 6), patients with high level of CD133 expression got a significant poor prognosis.

Additionally, CD133 Low patients could benefit from adjuvant treatments, while CD133 High patients should be given more aggressive treatments besides adjuvant therapy (Figures 4, 5).

Sensitivity analyses

Sensitivity analysis was performed by excluding studies and the rest was analyzed sequentially.
Table 1. Characteristics of studies

<table>
<thead>
<tr>
<th>First author</th>
<th>Country</th>
<th>Year</th>
<th>Cases</th>
<th>Age</th>
<th>Tumor site</th>
<th>Histology</th>
<th>Technique</th>
<th>Antibody used</th>
<th>Cut-off standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choi [18]</td>
<td>South Korea</td>
<td>2009</td>
<td>523</td>
<td>59.0 (17-87)</td>
<td>Cecum (18); Colon (255); Rectum (250)</td>
<td>Well (23); Mod (393); Poor (100); Un (7)</td>
<td>IHC</td>
<td>Polyclonal anti-CD133 Ab (Santa Cruz)</td>
<td>Cytoplasmic positivity</td>
</tr>
<tr>
<td>Kojima [19]</td>
<td>Japan</td>
<td>2008</td>
<td>189</td>
<td>62.1 ± 9.7</td>
<td>Colon (66); Rectum (83)</td>
<td>Well/Mod (160); Poor (29)</td>
<td>IHC</td>
<td>Anti-CD133 Ab (AC133, Miltenyi Biotec)</td>
<td>The percentage of CD133-positive cells ≥ 10%</td>
</tr>
<tr>
<td>Li [20]</td>
<td>China</td>
<td>2009</td>
<td>104</td>
<td>ND</td>
<td>Colon (104)</td>
<td>Well (5); Mod (80); Poor (19)</td>
<td>IHC</td>
<td>Monoclonal anti-CD133 Ab (Abcam)</td>
<td>The percentage of CD133-positive cells ≥ 5%</td>
</tr>
<tr>
<td>Lin [21]</td>
<td>USA</td>
<td>2007</td>
<td>66</td>
<td>61.3 ± 13.5</td>
<td>Colon (66)</td>
<td>Well (4); Mod (55); Poor (7)</td>
<td>PCR</td>
<td>Monoclonal anti-CD133 Ab (Cell Signaling Technology)</td>
<td>CD133 mRNA levels ≥ 4.79</td>
</tr>
<tr>
<td>Horst [22]</td>
<td>Germany</td>
<td>2009</td>
<td>110</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>IHC</td>
<td>Polyclonal Ab (Abcam)</td>
<td>The percentage of CD133-positive cells ≥ 50%</td>
</tr>
<tr>
<td>Wang [23]</td>
<td>China</td>
<td>2009</td>
<td>73</td>
<td>50.2 ± 14.1</td>
<td>Rectum (73)</td>
<td>Well (5); Mod (39); Poor (29)</td>
<td>IHC</td>
<td>Anti-CD133 Ab (AC133; Miltenyi Biotec)</td>
<td>The percentage of CD133-positive cells ≥ 10%</td>
</tr>
<tr>
<td>Artells [24]</td>
<td>Spain</td>
<td>2010</td>
<td>64</td>
<td>70 (39-88)</td>
<td>Colon (64)</td>
<td>A (9); B (55)</td>
<td>PCR</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Huh [25]</td>
<td>Korea</td>
<td>2010</td>
<td>61</td>
<td>64 (30-78)</td>
<td>Colon (30); Rectum (31)</td>
<td>Well/Mod (53); Poor (8)</td>
<td>PCR</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Kojima [26]</td>
<td>Japan</td>
<td>2010</td>
<td>102</td>
<td>55.9 ± 11.4 57.8 ± 9.7#</td>
<td>Rectum (102)</td>
<td>Well/Mod (160); Poor (29)</td>
<td>IHC</td>
<td>Anti-CD133 Ab (AC133; Miltenyi Biotec)</td>
<td>The percentage of CD133-positive cells ≥ 10%</td>
</tr>
<tr>
<td>Ong [27]</td>
<td>Singapore</td>
<td>2010</td>
<td>501</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>IHC</td>
<td>Polyclonal anti-CD133 Ab (Abcam)</td>
<td>The percentage of CD133-positive cells ≥ 10%</td>
</tr>
<tr>
<td>Takahashi [28]</td>
<td>Japan</td>
<td>2010</td>
<td>151</td>
<td>67.1 (3-89)</td>
<td>Colon (99); Rectum (52)</td>
<td>Well (59); Mod (92)</td>
<td>IHC</td>
<td>Polyclonal anti-CD133 Ab (Abcam)</td>
<td>The percentage of CD133-positive cells ≥ 50%</td>
</tr>
<tr>
<td>Garcia [29]</td>
<td>Spain</td>
<td>2011</td>
<td>88</td>
<td>66 (34-84)</td>
<td>Rectum (88)</td>
<td>ND</td>
<td>IHC</td>
<td>Polyclonal anti-CD133 Ab [AC133, Miltenyi Biotec]</td>
<td>The percentage of CD133-positive cells > 10%</td>
</tr>
<tr>
<td>Nagata [30]</td>
<td>Japan</td>
<td>2011</td>
<td>58</td>
<td>ND</td>
<td>Rectum (58)</td>
<td>ND</td>
<td>IHC</td>
<td>Polyclonal anti-CD133 Ab (AC133; ABGENT)</td>
<td>Not known</td>
</tr>
<tr>
<td>Xi [31]</td>
<td>China</td>
<td>2011</td>
<td>201</td>
<td>20-81</td>
<td>ND</td>
<td>ND</td>
<td>IHC</td>
<td>Polyclonal anti-CD133 Ab (Abcam)</td>
<td>Final scores (multiplying the intensity of positivity and the extent of positivity scores) ≥ 5</td>
</tr>
<tr>
<td>Bonetti [32]</td>
<td>Italy</td>
<td>2012</td>
<td>95</td>
<td>69.4 ± 10.5</td>
<td>CRC</td>
<td>Well (26); Mod/Poor (69)</td>
<td>IHC</td>
<td>Polyclonal anti-CD133 Ab (Santa Cruz)</td>
<td>The percentage of CD133-positive cells ≥ 50%</td>
</tr>
<tr>
<td>Coco [33]</td>
<td>Italy</td>
<td>2012</td>
<td>137</td>
<td>66.8 (31-86)</td>
<td>Colon (137)</td>
<td>Well/Mod (95); Poor (42)</td>
<td>IHC</td>
<td>Polyclonal anti-CD133 Ab (Santa Cruz) monoclonal AC133 Ab (Miltenyi Biotec)</td>
<td>The percentage of CD133-positive cells ≥ 5%</td>
</tr>
<tr>
<td>Hongo [34]</td>
<td>Japan</td>
<td>2012</td>
<td>303</td>
<td>61.2 ± 10.4 61.3 ± 10.9#</td>
<td>Cecum (11); Colon (234); Rectum (58)</td>
<td>Well (224); Mod (69); Poor (7); Mucinous (3)</td>
<td>IHC</td>
<td>Primary anti-CD133 Ab (AC133; Miltenyi Biotec)</td>
<td>The percentage of CD133-positive cells ≥ 5%</td>
</tr>
<tr>
<td>Jao [35]</td>
<td>China</td>
<td>2012</td>
<td>233</td>
<td>57.11 ± 5.85 (≤ 64); 83.63 ± 5.86 (≥ 64)</td>
<td>Colon (157); Rectum (76)</td>
<td>Well (38); Mod/ Poor (195)</td>
<td>IHC</td>
<td>Monoclonal antiCD133 Ab (Clone C24B9, Cell Signaling Technology)</td>
<td>Immunoreactivity scores (the percentage of CD133-positive cells at each level multiplied by the corresponding intensity) > 150</td>
</tr>
<tr>
<td>Li [36]</td>
<td>China</td>
<td>2012</td>
<td>200</td>
<td>58.1 (18-85)</td>
<td>CRC</td>
<td>Well (61); Mod (93); Poor (46)</td>
<td>IHC</td>
<td>Polyclonal anti-CD133 Ab (Abcam)</td>
<td>Final scores (multiplying the intensity of positivity and the extent of positivity scores) ≥ 4</td>
</tr>
</tbody>
</table>
CD133 and colorectal cancer

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Country</th>
<th>Year</th>
<th>Sample Size</th>
<th>Location</th>
<th>Histology</th>
<th>IHC Staining</th>
<th>IHC Methodology</th>
<th>Other Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhang [37]</td>
<td>China</td>
<td>2012</td>
<td>125</td>
<td>Colon</td>
<td>Well (14); Mod (102); Poor (9)</td>
<td>Index sum (totaling the scores of intensity and percentages) ≥ 4</td>
<td>Anti-CD133 Ab (AC133, Miltenyi Biotec)</td>
<td></td>
</tr>
<tr>
<td>Mia-Jan [38]</td>
<td>South Korea</td>
<td>2013</td>
<td>271</td>
<td>Colon (150); Rectum (121)</td>
<td>Well (16); Mod (225); Poor (30)</td>
<td>The percentage of CD133-positive cells ≥ 10%</td>
<td>Monoclonal antiCD133 Ab (Cell Signaling Technology)</td>
<td></td>
</tr>
<tr>
<td>Ying [39]</td>
<td>China</td>
<td>2013</td>
<td>176</td>
<td>Colon (109); Rectum (67)</td>
<td>Well/Mod (138); Poor (38)</td>
<td>Using a ROC curve analysis</td>
<td>Anti-CD133 Ab (Clone AC133)</td>
<td></td>
</tr>
<tr>
<td>Antonio Oliver [40]</td>
<td>Spain</td>
<td>2014</td>
<td>123</td>
<td>CRC</td>
<td>Well (37); Mod (59); Poor (21)</td>
<td>Not known</td>
<td>Anti-CD133 Ab (Miltenyi Biotec)</td>
<td></td>
</tr>
<tr>
<td>Shinokina [41]</td>
<td>Japan</td>
<td>2014</td>
<td>234</td>
<td>Colon (88); Rectum (61)</td>
<td>Well/Mod (129); Poor/Muc (20)</td>
<td>The percentage of CD133-positive cells ≥ 10%</td>
<td>Anti-CD133 Ab (Cell Signaling Technology)</td>
<td></td>
</tr>
<tr>
<td>Vaz [42]</td>
<td>Spain</td>
<td>2014</td>
<td>100</td>
<td>Colon (100)</td>
<td>ND</td>
<td>The percentage of CD133-positive cells ≥ 10%</td>
<td>Anti-CD133 Ab (Clone AC133)</td>
<td></td>
</tr>
<tr>
<td>Zhou [43]</td>
<td>China</td>
<td>2014</td>
<td>60</td>
<td>CRC</td>
<td>Well (20); Mod (20); Poor (20)</td>
<td>The percentage of CD133-positive cells ≥ 10%</td>
<td>Anti-CD133 Ab (EarthOx, LLC)</td>
<td></td>
</tr>
<tr>
<td>Hong [44]</td>
<td>Korea</td>
<td>2015</td>
<td>162</td>
<td>Colon (88); Rectum (74)</td>
<td>Well (19); Mod (123); Poor (20)</td>
<td>Scores of positivite tumor cells ≥ 1</td>
<td>Anti-CD133 Ab (AC133, Miltenyi Biotec)</td>
<td></td>
</tr>
<tr>
<td>Jing [45]</td>
<td>Korea</td>
<td>2015</td>
<td>36</td>
<td>Colon (21); Rectum (15)</td>
<td>Well/Mod (20); Poor (15)</td>
<td>CD133 mRNA levels 12675</td>
<td>Anti-CD133 Ab (AC133, Miltenyi Biotec)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: IHC, immunohistochemistry; PCR, polymerase chain reaction; CRC, colorectal cancer; ROC curve, receiver operator characteristic curve; mod, moderate.
CD133 and colorectal cancer

Table 2. Subgroup analysis

<table>
<thead>
<tr>
<th>Variables</th>
<th>Study number</th>
<th>RR</th>
<th>P value</th>
<th>Study number</th>
<th>RR</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 100</td>
<td>15</td>
<td>0.703 (0.586-0.842)</td>
<td>< 0.01</td>
<td>8</td>
<td>0.749 (0.615-0.913)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>< 100</td>
<td>8</td>
<td>0.743 (0.606-0.911)</td>
<td>0.086</td>
<td>7</td>
<td>0.635 (0.483-0.834)</td>
<td>0.077</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asia</td>
<td>17</td>
<td>0.705 (0.591-0.840)</td>
<td>< 0.01</td>
<td>9</td>
<td>0.740 (0.586-0.933)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Western countries</td>
<td>6</td>
<td>0.741 (0.588-0.934)</td>
<td>0.034</td>
<td>6</td>
<td>0.669 (0.572-0.782)</td>
<td>0.531</td>
</tr>
<tr>
<td>Research technique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IHC</td>
<td>21</td>
<td>0.716 (0.613-0.836)</td>
<td>< 0.01</td>
<td>12</td>
<td>0.697 (0.575-0.846)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>PCR</td>
<td>2</td>
<td>0.704 (0.537-0.923)</td>
<td>0.430</td>
<td>3</td>
<td>0.721 (0.566-0.919)</td>
<td>0.550</td>
</tr>
<tr>
<td>Therapeutic strategy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjuvant therapy</td>
<td>9</td>
<td>0.716 (0.554-0.926)</td>
<td>< 0.01</td>
<td>6</td>
<td>0.687 (0.554-0.852)</td>
<td>0.047</td>
</tr>
<tr>
<td>Non-adjuvant therapy</td>
<td>4</td>
<td>0.623 (0.481-0.807)</td>
<td>0.332</td>
<td>4</td>
<td>0.651 (0.519-0.817)</td>
<td>0.328</td>
</tr>
<tr>
<td>Not known</td>
<td>12</td>
<td>0.769 (0.631-0.937)</td>
<td>< 0.01</td>
<td>7</td>
<td>0.748 (0.550-1.018)</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

Figure 2. Forest plot of the association between CD133 expression and OS.

by meta-analysis. We performed leave-one-out sensitivity analysis by excluding a study at a time and recalculating RRs and 95% CIs.

When the studies [21-25, 29, 30, 32, 43] in which the number of cases below one hundred were excluded, sensitivity analysis showed that RR for OS was 0.71 (95% CI: 0.64-0.78), also demonstrating that high level of CD133 expression got a significant poor prognosis.

The stability of the relationship can also be observed in sensitivity analysis of DFS and other factors in the stratified analysis, suggesting the robust of our results.

Publication bias

Begg’s funnel plot was used to check the existence of publication bias. The plot was symmetric, suggesting that the publication bias was little (Supplementary Figures 7, 8). There was no evidence of publication bias for asymmetrical shapes existed in either the OS or DFS analyses (Begg’s P values = 0.57 and 0.63, respectively). Thus, there was no obvious publication bias among including studies.

Discussion

Summary

Nowadays, CSCs are tumorigenic (tumor-forming), perhaps in contrast to other non-tumorigenic cancer cells. CSCs may generate tumors through the stem cell processes of self-renewal.
CD133 and colorectal cancer

CD133 and colorectal cancer

metastasis by giving rise to new tumors. Therefore, development of specific therapies targeted at CSCs holds hope for improvement of survival and quality of life of CRC patients. CD133 is also considered a useful marker to identify the CSCs and its expression has been shown to have prognostic significance in CRC patients.

Relevant clinical studies

Previous studies have attempted to evaluate the role of CD133 expression and CRC histological parameters, including lymph node metastases, vascular invasion, and tumor recurrence. A study from Italy [32] discovered that a positive staining for CD133 was detected in 52% of the cases with poor prognosis and only in 9% of the group with good prognosis, and disease-free survival and cancer-specific survival of CD133 negative tumors were significantly longer compared to positive cases. These findings demonstrate that CD133 is a useful predictor of high-risk progression in stage I CRC patients. Subsequently, the results of one study from China [39] revealed that CD133 expression was significantly correlated with preoperative serum carcinoembryonic antigen level and tumor differentiation grade. And high CD133 expression was identified as a significant predictor for poor disease-free survival and overall survival. But these results contradictory to another study from China [43], Zhou f et al. confirmed that no significant difference was identified between CD133-positive and -negative cases in terms of survival time. More recently, Hong I et al. [44] proposed that CD133 expression tend-
ed to be stronger in primary tumor than in metastatic lymph nodes, and low CD133 expression was associated with advanced tumor stage. According to such conflicting findings, we could not reach the real relationship of CD133 expression and CRC patients prognosis. So based on the previous literatures, we systematically reviewed the correlation between levels of CD133 expression and CRC. Then we found that CD133 expression was associated with significant differences in DFS and OS. High level of CD133 expression was of lower 5-year overall survival (OS) and disease free survival (DFS). According to stratified analysis, high level of CD133 expression patients got significantly shorter survival time compared with low level patients with or without adjuvant therapy, demonstrating that postoperative adjuvant therapy was no use for CRC patients with high level of CD133 expression. Thus these patients must need other new therapies to achieve longer survival time besides surgery and postoperative adjuvant therapy. These results suggest that level of CD133 expression is correlated with a number of adverse parameters that are traditionally associated with poor prognosis and may be useful as a novel independent prognostic factor.

Mechanism in chemotherapy

As CSCs are considered to be the driving force behind tumor growth, therapies will have to focus on strategies that include targeting of CSCs.

As we know, radio- or chemotherapy of cancer often incompletely eradicates tumor cells and this is thought to be due to a selective survival advantage of CSCs, which could explain relapse of the tumor after many years. Researchers around the world are constantly scrambling to understand the biological and molecular mechanisms. CSCs produce DNA repair proteins, which could increase their resistance towards chemotherapy. The surviving CSCs then repopulate the tumor, causing a relapse [46]. Selectively targeting CSCs may allow treatment of aggressive, non-resectable tumors, as well as prevent metastasis and relapse.

For example, studies have shown that colon CSCs are more resistant to treatment with 5-FU or oxaliplatin [47, 48]. In addition, when CRC cell lines were treated with 5-FU or oxaliplatin in vitro, an increase in CD133+CD44+ cells was observed [49], indicating that the CSC fraction was enriched and thus resistant to these therapeutics. Recurrence of colon cancer and appearance of distant metastasis many years after initial treatment are therefore hypothesized to be caused by residual CSCs. So, by targeting the CSCs specifically, it should be possible to obtain more complete degeneration of the tumor. Obviously, combination therapies that target both CSCs and more differentiated progeny will in the end be more efficient for use in the clinic. Especially as new studies have shown that factors produced by the microenvironment can revert differentiated cells back to a more stem cell-like state [50], indicating that killing the CSCs alone might not be sufficient to diminish tumor growth.

Figure 5. Subgroup meta-analysis based on adjuvant therapy between CD133 expression and DFS.
CD133 and colorectal cancer

Limitation

First, the numbers of the studies and patients included in the current meta-analysis are relatively small. Secondly, twenty of the studies are based on Asian population, eight from western countries. Due to lack of statistics on other countries, further studies are needed to investigate the role of CSCs in other population. As is known, there are significant differences such as etiology, biology features, clinical types, and prognosis in the risk of CRC in different ethnic groups within a given geographical area. Although in the subgroup analysis, ethnicity, sample size, and research technique did not significantly influence the prognosis value of CD133. Third, the cutoff value was defined differently (0%, 5%, 10% or 50%) in these studies, leading to between-study heterogeneity. Thus we had adopted random effect model and subgroup sensitivity analyses to adjust for the shortcomings. Next, our study didn’t examine the correlation between other putative CSC markers and the risk of CRC. Finally, no attempt was made to identify unpublished work and grey literature, for example university theses or conference proceedings. As a result, publication bias may have influenced the results [51, 52]. And only English literatures were included in this study, it was possible that our findings were biased for many non-English literatures were not included. Therefore, we should consider all factors that may affect bias when explaining the pooled analysis.

In conclusion, our study revealed that patients with high level of CD133 expression got significant poor prognosis, with poor OS and DFS. The current evidence for the aforementioned adverse effects, however, is weak. More carefully designed, conducted, adequately powered studies (both RCTs and observational studies) are warranted to examine the effect on the long-term patient important outcomes.

Disclosure of conflict of interest

None.

Address correspondence to: Rui Li, Department of Hepatobiliary Surgery, The People’s Hospital of China Medical University, Shenyang 110016, China. E-mail: gjh@art.edu.lv

References

[8] Irollo E, Pirozzi G. CD133: to be or not to be, is this the real question? Am J Transl Res 2013; 5: 563-81.
CD133 and colorectal cancer

[35] Jao SW, Chen SF, Lin YS, Chang YC, Lee TY, Wu CC, Jin JS, Nieh S. Cytoplasmic CD133 expression is a reliable prognostic indicator of tumor regression after neoadjuvant concurrent ch-
CD133 and colorectal cancer

[38] Mia-Jan K, Jung SY, Kim IY, Oh SS, Choi E, Chang SJ, Kang TY, Cho MY. CD133 expression is not an independent prognostic factor in stage II and III colorectal cancer but may predict the better outcome in patients with adjuvant therapy. BMC Cancer 2013; 13: 166.

CD133 and colorectal cancer

Supplementary Figure 1. Subgroup meta-analysis based on ethnicities between CD133 expression and OS.

Supplementary Figure 2. Subgroup meta-analysis based on ethnicities between CD133 expression and DFS.
Supplementary Figure 3. Subgroup meta-analysis based on sample size between CD133 expression and OS.

Supplementary Figure 4. Subgroup meta-analysis based on sample size between CD133 expression and DFS.
Supplementary Figure 5. Subgroup meta-analysis based on research technique between CD133 expression and OS.

Supplementary Figure 6. Subgroup meta-analysis based on research technique between CD133 expression and DFS.
Supplementary Figure 7. Funnel plot for publication bias test of OS.

Supplementary Figure 8. Funnel plot for publication bias test of DFS.