Therapeutic effects of curcumin on experimental autoimmune myasthenia gravis

Zhongqian Su1, Yuanyuan Huang2, Shihao Huang3, Dehao Yang2, Qingqing Wang1, Ying Chen2, Zhibo Chen2, Yanyan Jiang1, Weiwei Xiang2, Xiang Li2, Yiyun Weng2, Xiangdong Huang1, Fang Liu5, Liya Han1, Xu Zhang2, Jia Li2

1Department of Neurology, Wenzhou Central Hospital, Wenzhou 325000, Zhejiang, China; Departments of 2Neurology, 3Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; 4Department of Orthopedic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; 5Department of Neurology, Zhejiang Province People’s Hospital, NO. 158, Shantang road, Hangzhou 310000, Zhejiang, China

Received February 4, 2018; Accepted July 14, 2018; Epub October 15, 2018; Published October 30, 2018

Abstract: Experimental autoimmune myasthenia gravis (EAMG) is a B-cell-mediated and T-cell-dependent autoimmune disease of the neuromuscular junction in which the nicotinic acetylcholine receptor (AchR) acts as an autoantigen. Curcumin is a yellow acidic phenolic substance extracted from the rhizome of the plant turmeric. It has various pharmacological properties, including anti-oxidant, anti-cancer, and anti-inflammatory effects. However, the immunoregulatory effects of curcumin on MG and EAMG are still unclear. Hence, this study aimed to investigate the effects and potential mechanisms of curcumin on EAMG. Female Lewis rats were randomly divided into three groups: CFA group (n = 9), EAMG group (n = 8), and curcumin group (n = 7). It was found that curcumin can ameliorate clinical symptoms of EAMG rats and protect AchR from being destroyed in the neuromuscular junction (NMJ) of EAMG rats. Moreover, it was confirmed that curcumin can regulate the balance of Th1/Th2/Th17/Treg in spleens of EAMG rats. In conclusion, this study shows that curcumin can ameliorate EAMG by regulating the balance of Th1, Th2, Th17, and Treg.

Keywords: Experimental autoimmune myasthenia gravis, curcumin, Th1/Th2/Th17/Treg

Introduction

A classic model for myasthenia gravis (MG), experimental autoimmune myasthenia gravis (EAMG) is a B-cell-mediated and T-cell-dependent autoimmune disease of the neuromuscular junction in which the nicotinic acetylcholine receptor (AchR) acts as an autoantigen [1]. Since various factors are involved in the pathogenesis of MG, the etiology of MG remains unclear. It has been reported that the balance of T helper type 1 (Th1), Th2, Th17, and regulatory T (Treg) subsets of CD4+ helper T-cells are redistributed during the development of EAMG [2].

Curcumin is a yellow acidic phenolic substance extracted from the rhizome of the plant turmeric. It has various pharmacological properties, including anti-oxidant, anti-cancer, and anti-inflammatory effects [3]. Moreover, many studies have shown that curcumin can inhibit inflammation in a variety of autoimmune and inflammatory diseases, such as rheumatoid arthritis (RA) [4], inflammatory bowel disease (IBD) [5, 6], Alzheimer’s disease (AD) [7], experimental autoimmune encephalomyelitis (EAE) [8], and experimental autoimmune neuritis (EAN) [9].

However, the immunoregulatory effects of curcumin on MG and EAMG remain unclear. Based on previous studies, this study aimed to investigate the effects and potential mechanisms of curcumin on EAMG and provide a new therapeutic strategy for treatment of human MG.

Materials and methods

Animals

Female Lewis rats (6-8 weeks, 160-180 g; Vital River, Beijing, China) were housed under a
12-hour light and 12-hour dark cycle with free access to food and water. Ethical approval was granted by the Ethics Committee of Wenzhou Medical University. All experimental procedures were in accordance with Care and Use of Laboratory Animals guidelines published by the China National Institute of Health. Effort was made to minimize the number of animals used and to minimize suffering.

Induction and clinical scoring of EAMG

EAMG rats were immunized by subcutaneous injections into the tails with 200 μl inocula containing 50 μg R97-116 peptides (DGDFAIVK-FTKVLLDYTGHI) (AC Scientific, Inc, Xian, China) in 100 μl complete Freund’s adjuvant (CFA; Sigma-Aldrich, USA), supplemented with 1 mg M. tuberculosis (Difco, Detroit, MI, USA) and 100μl phosphate-buffered saline (PBS) on day 0. Next, the rats were boosted on day 30 with the same peptide in incomplete Freund’s adjuvant (IFA; Sigma-Aldrich, USA). Control rats, designated as the CFA group, received the same emulsion except PBS was used instead of the peptide.

After the first immunization, each rat was weighed and monitored for clinical scores every other day until sacrificed (6-8 weeks). The severity of clinical signs was scored by measuring muscular weakness. Clinical scoring was based on the presence of tremors, hunched posture, muscle weakness, and fatigability. Fatigability was evaluated after exercise (repetitive paw grips on the cage grid) for 30 seconds. Disease severity was expressed as follows [10]: Grade 0 = normal muscle strength; Grade 1 = mildly decreased activity, weak grip, fatigable; Grade 2 = weakness, hunched posture at rest, decreased body weight, tremors; Grade 3 = severe generalized weakness, marked decrease in body weight, moribund; Grade 4 = death. Rats with intermediate signs were assigned grades of 0.5, 1.5, 2.5, or 3.5, respectively. Results are expressed as the mean score of each group at each time-point.

Curcumin administration

Rats were randomly divided into three groups: CFA group (n = 9), EAMG group (n = 8), and curcumin group (n = 7). For treatment with curcumin (Sigma-Aldrich, USA), rats in the curcum-
Therapeutic effects of curcumin on EAMG

Statistical analysis

Data was analyzed using SPSS21.0 software (SPSS Inc, Chicago, USA). Data are expressed as mean ± standard deviation (SD). Differences between the three groups were tested by single factor analysis of variance (One-Way ANOVA) followed by the least significant difference (LSD) test as a post hoc test. Level of significance was set as p < 0.05.

Results

Curcumin ameliorates the clinical symptoms of EAMG rats

Weight loss was less in the curcumin group, compared with the EAMG group, but there were no statistical differences between the weights of the two groups (Figure 1). Compared to the EAMG group (0.91 ± 1.07), the average clinical score of the curcumin group was (0.17 ± 0.29) on the 48th day, with statistically significant differences (P < 0.05). Differences between the average clinical score of the two groups were statistically significant from days 48 to 52 (Figure 2). These data indicate that curcumin can ameliorate the clinical symptoms of EAMG rats.

Curcumin protects AchR from being destroyed in the neuromuscular junction (NMJ) of EAMG rats

Using a fluorescence microscope, a certain number of nerve and AchR in NMJ in the muscles of the CFA group were observed, while the number of AchR was significantly reduced in NMJ in the muscles of the EAMG group. However, it was found that the number of AchR in NMJ in the muscles of the curcumin group was significantly increased compared to that in the EAMG group. This result suggests that curcumin, to some extent, protects AchR from being destroyed in the NMJ of EAMG rats (Figure 3).

Curcumin regulates the balance of Th1/Th2/Th17/Treg in spleens of EAMG rats

Compared to the CFA control group, ratios of Th1 cells (CFA: 2.66 ± 2.22, EAMG: 3.73 ± 4.09,
Therapeutic effects of curcumin on EAMG

Figure 3. Paraffin sections of rat gastrocnemius muscles. Immunofluorescence technique for detection of neuroendocrine (NMJ) nerve (Nerve) and AchR morphology and changes. CFA: normal control group; EAMG: model group; Curcumin: curcumin treatment group. The nerve endings (green, left) of NMJ were labeled with rabbit anti-Synaptophysin primary antibody (1:50) and FITC-labeled goat anti-rabbit secondary antibody (1:500); with Alexa Fluor555 (1:200) labeled AchR (red, left) at NMJ; cells labeled with DAPI (Blue, left three).

Figure 4. Percentage of CD4+ T-cells in spleens of rats. CFA: normal control group; EAMG: model group; Curcumin: curcumin treatment group. *P < 0.05.

P > 0.05) and Th17 cells (CFA: 2.89 ± 2.17, EAMG: 3.18 ± 3.47, P > 0.05) in the CD4+ T-cell subsets of spleens in the EAMG group were increased while the ratios of Th2 cells (CFA: 2.84 ± 1.74, EAMG: 1.95 ± 1.03, P > 0.05) and Treg cells (CFA: 3.30 ± 0.49, EAMG: 2.28 ± 0.74, P = 0.018) were decreased. However, differences of Th1, Th2, and Th17 cells between the two groups were not statistically significant (Figures 4, 5). Compared to the EAMG group, ratios of Th1 cells (EAMG: 3.73 ± 4.09, Curcumin: 1.74 ± 2.25, P > 0.05) and Th17 cells (EAMG: 3.18 ± 3.47, Curcumin: 2.74 ± 1.23, P > 0.05) in the CD4+ T-cell subsets of spleens in the curcumin group were decreased while the ratios of Th2 cells (EAMG: 1.95 ± 1.03, Curcumin: 2.51 ± 1.24,
Therapeutic effects of curcumin on EAMG

P＞0.05）and Treg cells (EAMG: 2.28 ± 0.74, Curcumin: 3.27 ± 0.30, P = 0.018) were increased. However, there were no significant differences between the two groups regarding Th1, Th2, and Th17 cells (Figures 4, 5). Results suggest that curcumin can regulate the balance of Th1/Th2/Th17/Treg in spleens of EAMG rats.

Discussion

The present study confirmed that curcumin can ameliorate clinical symptoms of EAMG rats and protect AchR from being destroyed in the neuromuscular junction (NMJ) of EAMG rats. Furthermore, this study demonstrated that curcumin regulates the balance of Th1/Th2/Th17/Treg in spleens of EAMG rats.

Experimental autoimmune myasthenia gravis (EAMG), a classic animal model for MG, is a B-cell-mediated and T-cell-dependent autoimmune disease of the neuromuscular junction in which the nicotinic acetylcholine receptor (AchR) acts as an autoantigen [1]. In addition, previous studies have suggested that the secretion of inflammatory cytokines and disordered balance of Th subsets (Th1/Th2/Th17/Treg) are involved in the pathogenesis of EAMG [2]. Th1 cells secrete pro-inflammatory cytokines, such as interferon-γ (IFN-γ) and interleukin-2 (IL-2), while Th2 cells secrete anti-inflammatory cytokines, such as IL-4 and IL-10. Moreover, Th17 cells can secrete novel pro-inflammatory cytokine IL-17 [12, 13] while Treg cells are considered to be anti-inflammatory, suppressing certain immune responses. It has been reported that the balance of T helper type 1 (Th1), Th2, Th17, and regulatory T (Treg) subsets of CD4+ helper T-cells is redistributed by upregulating Th1 and Th17 subsets and down-

Figure 5. Proportion of Th2 (CD4+ - IL-4+) and Treg (CD4+ - CD25+ - FOXP3+) in spleens of the three groups. CFA: normal control group; EAMG: model group; Curcumin: curcumin treatment group.
Therapeutic effects of curcumin on EAMG

Numerous studies have suggested that curcumin regulate Th subsets in several autoimmune diseases of the nervous system. In EAE, the inhibition of EAE by curcumin has been associated with an upregulation of IL-10, CD4+CD25+Foxp3+Treg cells in the central nervous system (CNS), as well as lymphoid organs, along with a dose-dependent increase in secretion of IFN-γ, IL-17 in culture. These findings suggest that curcumin differentially regulates CD4+ T helper cell responses in EAE [8]. In EAN, curcumin significantly ameliorated EAN neurological severity and reduced body weight loss of EAN rats. Curcumin suppressed the autoimmune response in EAN by inhibiting Th1 and Th17 polarization, but not through increasing Th2 or Treg cell polarization [9]. However, the immunoregulatory effects of curcumin on MG and EAMG remain unclear. Therefore, this study investigated the therapeutic effects of curcumin in EAN and its underlying mechanisms.

In conclusion, this study demonstrates that curcumin can ameliorate EAMG by regulating the balance of Th1, Th2, Th17, and Treg, to a certain extent, providing a new therapeutic strategy for treatment of MG.

Acknowledgements

This study was financially supported by the Natural Science Foundation of Zhejiang Province (No. LY13H090010), Medicine and Health Sci-tech Project of Zhejiang Province (No. 2016KYB020), and Natural Science Foundation of Zhejiang Province (No. LQ15H090008).

Disclosure of conflict of interest

None.

Address correspondence to: Jia Li, Xu Zhang, Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou 325000, Zhejiang, China. Tel: 86-136764-07329; E-mail: drljia@sina.com (JL); Tel: 86-135876-88130; E-mail: 15258690163@163.com (XZ); Liya Han, Department of Neurology, Wenzhou Central Hospital, Wenzhou 325000, Zhejiang, China. Tel: 86-138066-90212; E-mail: drhanliya@sina.com

References

Therapeutic effects of curcumin on EAMG
