Retrospective study of the roles of NDRG1 expression in gastric cancer: a meta- and bioinformatics analysis

Xing-Jun Xiao¹, Ji-Cheng Wu², Hua-Chuan Zheng²

¹The Tumor Basic and Translational Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China; ²Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China

Abstract: NDRG1 (N-myc downstream-regulated gene 1) is the first member discovered in the NDRG family. It is believed to function as an inhibitor gene of tumors. This study performed a detailed and retrospective document retrieval through PubMed, Web of Science, and CNKI updated through July 10, 2017. It was found that levels of NDRG1 expression were decreased in gastric cancer, compared to normal mucosa (p<0.05). Expression of NDRG1 was negatively correlated with depth of invasion, lymph node metastasis, distant metastasis, TNM staging, and de-differentiation of gastric cancer (p<0.05). A positive association between NDRG1 expression and favorable overall survival was detected in patients with gastric cancer (p<0.0001). Bioinformatics analysis demonstrated that NDRG1 mRNA expression was higher in gastric cancer than in homologous normal tissues, evenly stratified into different type of intestinal-, diffuse-, mixed-, tubular-, and mucinous-type carcinomas (p<0.05). Moreover, less invasion and lighter TNM staging had hyperexpression of NDRG1 mRNA (p<0.05). According to KM plotter database, expression of NDRG1 was significantly correlated with overall survival or progression-free survival rates of patients with gastric cancer, depending on the subgrouping (p<0.05). These consequences indicate that NDRG1 expression might be employed as a potential biomarker to indicate gastric carcinogenesis and subsequent progression, even prognosis.

Keywords: NDRG1, gastric cancer, biomarker, meta-analysis, bioinformatics analysis

Introduction

As the inaugural member of the NDRGs family, NDRG1, also termed Cap43, was firstly identified as a predominantly-expressed protein in various organisms and encoded by N-myc downstream regulated gene 1 (NDRG1) [1, 2]. It has been considered a type of inhibitor gene of tumors, whose putative function is suppression of tumor metastasis. The protein encoded by this gene is a cytoplasmic protein involved in stress response, hormone response, cell growth, and differentiation. NDRG1 is located on the long arm of human chromosome 8, spanning 60,085 bp. It includes 16 exons and 15 introns and encodes a 2997-bp transcript [3, 4]. Increasing evidence has demonstrated that NDRG1 has an anti-oncogenic impact in a large array of malignancies because it can inhibit angiogenesis by stopping migration, proliferation, invasion, and cell cycle, while enhancing apoptotic sensitivity of cancer cells [5-11]. The protein is necessary for p53-mediated caspase activation and apoptosis. Mutations of this gene are a cause of Charcot-Marie-Tooth disease type 4D. Expression of this gene may be a prognostic indicator for several types of cancer. NDRG1 inhibits “stemness” of colorectal cancer, via downregulation of nuclear β-catenin and CD44, and inhibits TGF-β-induced EMT, via its inhibitory effects on EMT transcription factors, such as snails and slugs [12, 13]. Dixon et al. [14] found that NDRG1 might suppress metastasis of prostate cancer cells by targeting Dp44mT in PI3K/AKT/ERK signaling pathways. Sharleen et al. [15] found that NDRG1 inhibited ErbB signaling by suppressing formation of epidermal growth factor receptor (EGFR)/human epidermal growth factor receptor 2 (HER2) and HER2/HER3 heterodimers and by downregulating EGFR expression. These findings indicate that loss of downregulation of NDRG1 expression may be employed as a potential marker to indicate invasion and metastasis of carcinoma.

Since its discovery in 2000, a total of 391 articles concerning NDRG1 have been published in the PubMed database up through July 10th,
Roles of NDRG1 in gastric cancer

2017. According to documents, NDRG1 expression was downregulated in breast cancer [6], prostate cancer [16], pancreatic cancer [17], esophageal cancer [18] and colorectal cancer [19], but upregulated in hepatoma [20], lung cancer [21], kidney cancer [22], bladder cancer [23], and cervical cancer [24]. NDRG1 downregulation has been positively associated with aggressive behavior and poor prognosis of hepatocellular carcinoma [25]. Therefore, this was a retrospective study by means of meta- and bioinformatics analysis to illuminate clinicopathological and prognostic significances of expression of NDRG1 in gastric cancer.

Materials and methods

Identification of eligible studies and data extraction

Articles were searched in PubMed, Web of Science, and CNKI up through May 10, 2017. The following search terms were used: NDRG1 OR AND (gastric OR stomach) AND (cancer OR carcinoma OR adenocarcinoma). This search was performed without language restriction or publication years. Inclusion criteria for studies were as follows: (1) Gastric cancer patients; (2) Expression of NDRG1 by immunohistochemical staining; and (3) Papers comparing expression of NDRG1 with pathobiological behaviors or prognosis of gastric cancer by immunohistochemistry. Exclusion criteria for studies included: (1) Abstracts, case reports, reviews, and meetings; (2) Redundant publications; and (3) Western blot, qRT-PCR, cDNA microarray, or transcriptomic sequencing for NDRG1 expression.

Data extraction

Information from all eligible publications was extracted by two reviewers (Xiao XJ and Zheng HC), independently. The following information was included in each study: name of first author, publication year, country, antibody information, numbers of cases and controls, expression alteration, and follow-up outcomes. For survival analysis, Engauge Digitizer software was used to extract data from Kaplan-Meier curves. Hazard ratios and their corresponding 95% confidence intervals were calculated accurately. Any disagreement was eliminated through discussion until the two reviewers reached an agreement.

Quality score assessment

Two independent reviewers (Xiao XJ and Zheng HC) assessed the quality of selected studies according to Newcastle Ottawa Scale (NOS) (http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm). The method consisted of sample selection, comparability, and ascertainment of outcomes.

Bioinformatics analysis

Oncomine database (www.oncomine.org), a cancer microarray database and web-based data mining platform for new discoveries in genome-wide expression analyses, was used to analyze individual gene expression level of NDRG1. Differences in NDRG1 mRNA levels between gastric tumor tissues and corresponding normal tissues were compared, elaborately, and all data were log-transformed. Median centered per array and standard deviations were normalized to one per array. Expression (RNA-seqV2) and clinicopathological information of 411 gastric cancer patients were gathered from the Cancer Genome Atlas (TCGA) database by TCGA-assembler in R software. This study integrated the original data, analyzed expression of NDRG1 in gastric cancer, and compared it with clinicopathological and prognostic information of patients with gastric cancer. In addition, the prognostic significance of NDRG1 mRNA was analyzed using Kaplan-Meier plotter (http://kmplot.com).

Statistics analysis

Statistical analysis was carried out, as described previously [26]. Briefly, Chi-squared test was used to evaluate HWE in control groups of each study. Odds ratios with 95% confidence intervals were applied to assess strength of association between NDRG1 expression and cancer risk. Z test was applied to determine the statistical significance of pooled OR. I^2 test was applied to quantify heterogeneity, which was subdivided into three components related to low, moderate, and high degrees of heterogeneity, respectively equal to cut-off values of 25%, 50%, and 75%. If the heterogeneity had no differences, a fixed effects model (Mantel-Haenszel method) was applied. Moreover, a random effects model (DerSimonian and Laird method) was employed excluding prognostic analysis. This meta-analysis was performed
Roles of NDRG1 in gastric cancer

Characteristics of eligible studies

As shown in Figure 1 and Table 1, a total of 8 articles about the relationship between NDRG1 protein expression and cancer risk, including clinicopathological and prognostic parameters of gastric cancer, were selected for this study from PubMed, Web of Science, and CNKI (Chinese). Only 8 articles contained samples of normal gastric mucosa [27-34]. These contained the information of comparison between NDRG1 expression and clinicopathological characteristics of gastric cancer, including sex, age, depth of invasion, lymph node metastasis, distant metastasis, TNM staging, and differentiation. Additionally, the prognostic significance of NDRG1 expression was explored in 3 articles [28, 29, 33].

Association between NDRG1 expression and cancer susceptibility of gastric mucosa or dysplasia

This study compared differences of NDRG1 expression between normal gastric mucosa and cancer in 5 studies, with 403 cancers and 400 controls. Results revealed that NDRG1 expression was downregulated in gastric cancer, compared to normal mucosa (Figure 2A, p=0.001).

Correlation of NDRG1 expression with clinicopathological parameters of gastric cancer

As shown in Figure 2B and 2C, there was no association between expression of NDRG1 and sex or age of patients with gastric cancer (p>0.05). Higher NDRG1 expression was also found in T₃-4 than T₁-₂ gastric cancer (Figure 2D, p=0.05). Cancer patients with lymph node metastasis and distant metastasis showed lower NDRG1 expression than those without lymph node and distant metastasis (Figure 2E, 2F, p<0.01). NDRG1 expression was negatively associated with TNM staging (Figure 2G, p<0.05). Well-differentiated gastric carcinomas had a higher expression of NDRG1 than poorly-differentiated ones (Figure 2H, p<0.05).

Association between NDRG1 expression and survival rates of gastric cancer

As demonstrated in Figure 2I, pooled results from 3 datasets indicated a significantly positive association between NDRG1 expression and favorable overall survival in patients with gastric cancer (HR = 0.45, 95% CI: 0.30-0.65, p<0.05).

Publication bias

Heterogeneity was tested as shown in Figure 3. Sensitivity analysis was performed to evaluate an individual study’s influence on pooled results by deleting one single study each time from pooled analysis. As a result, lymph node metastasis and depth of invasion results of NDRG1 expression in Inagaki’s study had great significance on p-values and pooled OR. When this study was excluded, the p-value had no statistical significance and heterogeneity testing showed a significant decrease (data not shown).

Clinicopathological significance of NDRG1 mRNA expression in gastric cancer

Deng’s, Chen’s, and TCGA’s datasets were used to perform bioinformatics analysis. It was dem-

Figure 1. Flow diagram of the selection process for this meta-analysis.
Roles of NDRG1 in gastric cancer

Table 1. Main characteristics of eligible studies

<table>
<thead>
<tr>
<th>First author</th>
<th>Year</th>
<th>Country</th>
<th>Ethnicity</th>
<th>Antibody source</th>
<th>Cases</th>
<th>Control</th>
<th>Risk to cancer</th>
<th>Outcome</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akihiko K</td>
<td>2011</td>
<td>Japan</td>
<td>Asian</td>
<td>Benchmark XT</td>
<td>129</td>
<td>Down</td>
<td>Pos</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Chang XJ</td>
<td>2014</td>
<td>China</td>
<td>Asian</td>
<td>CST</td>
<td>112</td>
<td>112</td>
<td>Down</td>
<td>Pos</td>
<td>8</td>
</tr>
<tr>
<td>Chang XJ</td>
<td>2015</td>
<td>China</td>
<td>Asian</td>
<td>CST</td>
<td>101</td>
<td>101</td>
<td>Down</td>
<td>Pos</td>
<td>8</td>
</tr>
<tr>
<td>Jiang KW</td>
<td>2010</td>
<td>China</td>
<td>Asian</td>
<td>Abnova</td>
<td>110</td>
<td>110</td>
<td>Down</td>
<td>Pos</td>
<td>8</td>
</tr>
<tr>
<td>Jiao ZG</td>
<td>2009</td>
<td>China</td>
<td>Asian</td>
<td>Santa</td>
<td>54</td>
<td>67</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Chang XJ</td>
<td>2013</td>
<td>China</td>
<td>Asian</td>
<td>CST</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Inagaki Y</td>
<td>2009</td>
<td>Japan</td>
<td>Asian</td>
<td>Santa</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Note: down, downregulated; Pos, positive correlation; Pos, positive correlation.

onstrated that NDRG1 mRNA expression was higher in gastric cancer tissues than normal tissues, even stratified into different types of intestinal-, diffuse-, mixed-, tubular- and mucinous-type carcinomas (Figures 4A-5J, p<0.05). TCGA's and Chen's data showed higher NDRG1 expression in intestinal-type than diffuse-type adenocarcinoma (Figure 4K, 4L, p<0.05). According to TCGA data, NDRG1 expression was negatively correlated with depth of invasion and TNM staging of gastric cancer (Figure 4M and 4N, p<0.05).

Prognostic significance of NDRG1 mRNA expression in gastric cancer

According to the KM plotter, high NDRG1 mRNA expression showed a negative correlation with overall and progression-free survival rates of stage I cancer patients (Figure 5A, 5B, p<0.05), while it was the same for overall survival in patients with poorly-differentiated adenocarcinoma (Figure 5C, p<0.05). Overall survival rates of patients with T3, T4, N0, or N2 cancer had a positive correlation with NDRG1 mRNA expression (Figure 5D-G, p<0.05). Positive association between NDRG1 mRNA expression and progression-free prognosis was also observed in stage II cancer patients (Figure 5H, p<0.05).

Discussion

Gastric cancer is one of the most common human cancers. Despite significant improvement made in surveillance and treatment of gastric cancer, it remains a devastating disease with poor prognosis. Metastasis is still the most destructive impediment for the long-term survival of cancer patients [35]. Many studies have revealed that level of NDRG1 expression is inversely correlated with tumor metastasis, suggesting that NDRG1 may act as a metastasis suppressor [13-15, 36, 37]. Guan et al. [38] found that NDRG1 suppressed metastasis by downregulating MMPs, which degraded extracellular matrix and adhesion molecules, such as β-catenin and E-cadherin. Chen et al. [39] found that NDRG1 inhibited TGF-β-induced epithelial-mesenchymal transition and restored β-catenin and E-cadherin levels. To investigate association between clinicopathological and prognostic significance and NDRG1 expression, this study performed a retrospective analysis of 8 studies, meeting specific inclusion criteria and with moderate to high quality NOS scores.

Consistent with systematic data about hepatoma, lung, kidney, bladder carcinoma, and uterine cervix [20-24], it was found that expression of NDRG1 was downregulated in gastric cancer, compared to gastric mucosa in a recent study, suggesting that NDRG1 hypoexpression might contribute to gastric carcinogenesis. Wang et al. [40] demonstrated that mRNA levels of NDRG1 were significantly upregulated in cancer samples compared with normal colorectal samples. This is in line with the present bioinformatics findings. This result is not surprising since mRNA levels do not usually predict corresponding protein levels. There is a long distance from mRNA to functional protein by translation and so many factors can regulate post-translational modification.

Chen et al. [41] found that NDRG1 expression was positively correlated with large tumor size, portal vein invasion, TNM staging, AFP level of ≥400 U/l, intrahepatic metastasis, recurrence, and poor patient survival in hepatocellular cancer patients. However, present findings demonstrated that NDRG1 expression was inversely linked to deep invasion, TNM staging, lymph node metastasis, distant metastasis, and de-differentiation of gastric cancer at either mRNA or protein levels, in agreement with reports on breast cancer, prostate, pancreas, esophagus,
Roles of NDRG1 in gastric cancer

Table A

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Cancer</th>
<th>Normal</th>
<th>Weight</th>
<th>Odds Ratio</th>
<th>M-H, Random, 95% CI</th>
<th>M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chai W(2009)</td>
<td>13</td>
<td>31</td>
<td>14</td>
<td>15</td>
<td>9.8%</td>
<td>0.05 [0.01, 0.44]</td>
</tr>
<tr>
<td>Chang XJ (2014)</td>
<td>20</td>
<td>112</td>
<td>82</td>
<td>112</td>
<td>22.9%</td>
<td>0.08 [0.04, 0.15]</td>
</tr>
<tr>
<td>Inagaki Y(2009)</td>
<td>15</td>
<td>96</td>
<td>51</td>
<td>96</td>
<td>22.5%</td>
<td>0.16 [0.08, 0.32]</td>
</tr>
<tr>
<td>Jiang KW (2010)</td>
<td>29</td>
<td>110</td>
<td>92</td>
<td>110</td>
<td>22.7%</td>
<td>0.07 [0.04, 0.14]</td>
</tr>
<tr>
<td>Jiao ZG (2009)</td>
<td>24</td>
<td>54</td>
<td>39</td>
<td>67</td>
<td>22.1%</td>
<td>0.57 [0.28, 1.18]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>403</td>
<td>400</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>0.13 [0.06, 0.32]</td>
</tr>
<tr>
<td>Total events</td>
<td></td>
<td>101</td>
<td>278</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.72, Chi² = 22.67, df = 4 (P = 0.0001); I² = 83%

Test for overall effect: Z = 4.62 (P < 0.00001)

Table B

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
<th>Weight</th>
<th>Odds Ratio</th>
<th>M-H, Fixed, 95% CI</th>
<th>M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chai W(2009)</td>
<td>10</td>
<td>20</td>
<td>6</td>
<td>11</td>
<td>13.3%</td>
<td>0.83 [0.19, 3.64]</td>
<td></td>
</tr>
<tr>
<td>Chang XJ (2013)</td>
<td>2</td>
<td>15</td>
<td>3</td>
<td>5</td>
<td>13.4%</td>
<td>0.10 [0.01, 1.08]</td>
<td></td>
</tr>
<tr>
<td>Chang XJ (2014)</td>
<td>16</td>
<td>76</td>
<td>4</td>
<td>36</td>
<td>14.7%</td>
<td>2.13 [0.68, 6.92]</td>
<td></td>
</tr>
<tr>
<td>Chang XJ (2016)</td>
<td>11</td>
<td>71</td>
<td>4</td>
<td>30</td>
<td>16.3%</td>
<td>1.19 [0.35, 4.08]</td>
<td></td>
</tr>
<tr>
<td>Inagaki Y(2009)</td>
<td>41</td>
<td>74</td>
<td>10</td>
<td>22</td>
<td>23.6%</td>
<td>1.49 [0.57, 3.88]</td>
<td></td>
</tr>
<tr>
<td>Jiang KW (2010)</td>
<td>26</td>
<td>91</td>
<td>3</td>
<td>19</td>
<td>12.2%</td>
<td>2.13 [0.57, 7.94]</td>
<td></td>
</tr>
<tr>
<td>Jiao ZG (2009)</td>
<td>22</td>
<td>47</td>
<td>2</td>
<td>7</td>
<td>6.4%</td>
<td>2.20 [0.39, 12.50]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>394</td>
<td>130</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>1.39 [0.86, 2.24]</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td></td>
<td>128</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Chi² = 6.55, df = 6 (P = 0.36); I² = 8%

Test for overall effect: Z = 1.33 (P = 0.18)

Table C

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>LN-</th>
<th>LN+</th>
<th>Total</th>
<th>Weight</th>
<th>Odds Ratio</th>
<th>M-H, Fixed, 95% CI</th>
<th>M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chai W(2009)</td>
<td>11</td>
<td>14</td>
<td>5</td>
<td>17</td>
<td>2.8%</td>
<td>8.80 [1.69, 45.76]</td>
<td></td>
</tr>
<tr>
<td>Chang XJ (2013)</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>14</td>
<td>1.7%</td>
<td>6.00 [0.67, 53.68]</td>
<td></td>
</tr>
<tr>
<td>Chang XJ (2014)</td>
<td>10</td>
<td>27</td>
<td>11</td>
<td>85</td>
<td>9.6%</td>
<td>3.96 [1.45, 10.82]</td>
<td></td>
</tr>
<tr>
<td>Chang XJ (2016)</td>
<td>13</td>
<td>25</td>
<td>38</td>
<td>76</td>
<td>25.9%</td>
<td>1.08 [0.44, 2.68]</td>
<td></td>
</tr>
<tr>
<td>Inagaki Y(2009)</td>
<td>17</td>
<td>40</td>
<td>36</td>
<td>58</td>
<td>48.5%</td>
<td>0.45 [0.20, 1.03]</td>
<td></td>
</tr>
<tr>
<td>Jiang KW (2010)</td>
<td>16</td>
<td>33</td>
<td>13</td>
<td>77</td>
<td>11.5%</td>
<td>4.63 [1.87, 11.47]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>145</td>
<td>327</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>1.76 [1.17, 2.64]</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td></td>
<td>70</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Chi² = 23.38, df = 5 (P = 0.0003); I² = 79%

Test for overall effect: Z = 2.73 (P = 0.006)

Table D

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>≤60</th>
<th>>60</th>
<th>Total</th>
<th>Weight</th>
<th>Odds Ratio</th>
<th>M-H, Fixed, 95% CI</th>
<th>M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chai W(2009)</td>
<td>8</td>
<td>16</td>
<td>8</td>
<td>16</td>
<td>9.0%</td>
<td>1.14 [0.28, 4.68]</td>
<td></td>
</tr>
<tr>
<td>Chang XJ (2013)</td>
<td>3</td>
<td>7</td>
<td>2</td>
<td>13</td>
<td>2.0%</td>
<td>4.13 [0.49, 34.50]</td>
<td></td>
</tr>
<tr>
<td>Chang XJ (2014)</td>
<td>7</td>
<td>48</td>
<td>13</td>
<td>64</td>
<td>23.8%</td>
<td>0.67 [0.24, 1.83]</td>
<td></td>
</tr>
<tr>
<td>Chang XJ (2016)</td>
<td>7</td>
<td>45</td>
<td>8</td>
<td>56</td>
<td>15.1%</td>
<td>1.11 [0.37, 3.32]</td>
<td></td>
</tr>
<tr>
<td>Inagaki Y(2009)</td>
<td>25</td>
<td>52</td>
<td>22</td>
<td>40</td>
<td>32.3%</td>
<td>0.76 [0.33, 1.73]</td>
<td></td>
</tr>
<tr>
<td>Jiang KW (2010)</td>
<td>15</td>
<td>43</td>
<td>14</td>
<td>68</td>
<td>17.7%</td>
<td>2.07 [0.87, 4.88]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>210</td>
<td>257</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>1.12 [0.73, 1.72]</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td></td>
<td>65</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Chi² = 5.26, df = 5 (P = 0.39); I² = 5%

Test for overall effect: Z = 0.53 (P = 0.59)

Table E

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Tis-T2</th>
<th>T3-T4</th>
<th>Total</th>
<th>Weight</th>
<th>Odds Ratio</th>
<th>M-H, Fixed, 95% CI</th>
<th>M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chai W(2009)</td>
<td>9</td>
<td>11</td>
<td>7</td>
<td>20</td>
<td>3.8%</td>
<td>8.36 [1.40, 49.88]</td>
<td></td>
</tr>
<tr>
<td>Chang XJ (2013)</td>
<td>3</td>
<td>8</td>
<td>2</td>
<td>12</td>
<td>4.3%</td>
<td>3.00 [0.37, 24.17]</td>
<td></td>
</tr>
<tr>
<td>Chang XJ (2014)</td>
<td>6</td>
<td>14</td>
<td>14</td>
<td>98</td>
<td>8.5%</td>
<td>4.50 [1.36, 14.94]</td>
<td></td>
</tr>
<tr>
<td>Chang XJ (2016)</td>
<td>9</td>
<td>41</td>
<td>6</td>
<td>60</td>
<td>16.2%</td>
<td>2.53 [0.82, 7.77]</td>
<td></td>
</tr>
<tr>
<td>Inagaki Y(2009)</td>
<td>35</td>
<td>70</td>
<td>16</td>
<td>26</td>
<td>49.6%</td>
<td>0.63 [0.25, 1.57]</td>
<td></td>
</tr>
<tr>
<td>Jiang KW (2010)</td>
<td>10</td>
<td>22</td>
<td>19</td>
<td>88</td>
<td>17.6%</td>
<td>3.03 [1.13, 8.07]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>166</td>
<td>304</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>2.08 [1.30, 3.33]</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td></td>
<td>72</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Chi² = 11.29, df = 5 (P = 0.05); I² = 56%

Test for overall effect: Z = 3.07 (P = 0.002)
Roles of NDRG1 in gastric cancer

Figure 2. Forest plot for the relationship between NDRG1 expression and clinopathological parameters of gastric cancer. A. Gastric carcinogenesis (cancer vs normal mucosa); B. Correlation between sex and NDRG1 expression (male vs female); C. Correlation between age and NDRG1 expression (<60 years vs >60 years); D. Correlation between depth of invasion and NDRG1 expression (T1 vs T3-4); E. Correlation between lymph node metastasis (LN) and NDRG1 expression (LN- vs LN+); F. Correlation between distant metastasis (DM) and NDRG1 expression (DM- vs DM+); G. Correlation between TNM staging and NDRG1 expression (O-II vs III-IV); H. Correlation between differentiation and NDRG1 expression (well-differentiated vs poorly-differentiated); I. Correlation between survival rate and NDRG1 expression.

and colorectal cancers [6, 16-19]. These findings indicate that NDRG1 hypoexpression is positively linked to invasion and progression of gastric cancer.

NDRG1 overexpression has been positively associated with better overall survival of patients with colorectal cancer [19]. Here, the present meta-analysis demonstrated that NDRG1
Figure 3. Funnel plot for publication bias test between NDRG1 expression and gastric carcinogenesis and subsequent progression. Bias was analyzed about risk degrees of NDRG1 expression in gastric mucosa (A) for gastric carcinogenesis. Additionally, it was tested between NDRG1 expression and clinicopathological features of gastric cancer, including sex (B), age (C), depth of invasion (D), lymph node metastasis (E), distant metastasis (F), TNM staging (G), differentiation (H) and prognosis (I).
Roles of NDRG1 in gastric cancer

Figure 4. NDRG1 mRNA expression in gastric carcinogenesis and subsequent progression. Deng’s, Chen’s, and TCGA datasets were employed for bioinformatics analysis to analyze NDRG1 mRNA expression during gastric carcinogenesis. A higher NDRG1 expression was detectable in gastric cancer than that in normal gastric mucosa (A, E, J, p<0.05), even stratified into intestinal- (IT: B, F), diffuse- (DT: C, G), mixed-type (MT: D), mucinous carcinomas (H), and tubular carcinomas (I). TCGA and Chen’s databases showed that NDRG1 was more expressed in intestinal- than diffuse-type gastric adenocarcinoma (K and L, p<0.05). According to the TCGA database, NDRG1 expression was negatively related to depth of invasion (M, p<0.05) and TNM staging (N, p<0.05) of gastric cancer.
Roles of NDRG1 in gastric cancer

expression had a significantly positive association with favorable overall survival in patients with gastric cancer. This is consistent with findings confirming that NDRG1 expression might be considered a good potential biomarker for good prognosis of gastric cancer patients. Bioinformatics data confirmed that NDRG1 mRNA expression was significantly associated with overall and progress-free survival rates of patients with gastric cancer, in contrast to reports concerning colorectal cancer [19] and gastric cancer [28]. This inverse phenomenon might be due to the distinct sensitivity of different methodologies. Bioinformatics analysis depends on RNA sequencing, while the latter two experiments are mainly based on immunohistochemistry. Inagaki et al. [32] found that high expression of cytoplasmic NDRG1 was positively correlated with overall survival in patients of gastric cancer, while nuclear was negatively correlated with overall survival in patients of gastric cancer, suggesting that the distinct localization of NDRG1 expression in cancer cells might have different prognostic significance.

In conclusion, NDRG1 expression was downregulated in gastric carcinogenesis, but inversely for mRNA levels. It was negatively correlated with deep invasion, TNM staging, and dedifferentiation of gastric cancer at both mRNA and protein levels. NDRG1 expression might be employed as a good potential biomarker for good prognosis of gastric cancer patients. Several limitations should be pointed out concerning the present retrospective analysis. First, potential publication bias stems from published results being predominantly positive. Second, patient populations were limited because the patients came only from Asia. Third, only three articles contained survival data and all of them were extracted from survival curves, which may introduce subjective bias. Fourth, sample sizes were small. This may have limited the power to detect association in some articles.

Acknowledgements

This study was supported by the Outstanding Scientific Fund of Shengjing Hospital, Award for Liaoning Distinguished Professor, a Key Scientific and Technological Project of Liaoning Province (2015408001), the scientific and technological planning project of Shenyang and National Natural Scientific Foundation of China (81472544; 81672700).
Roles of NDRG1 in gastric cancer

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Hua-Chuan Zheng, Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China. Tel: +86-187-04067718; Fax: +86-024-96615; E-mail: zheng_huachuan@hotmail.com

References

Roles of NDRG1 in gastric cancer

[39] Chen Z, Zhang D, Yue F, Zheng M, Kovacevic Z, Richardson DR. The iron chelators Dp44mT
Roles of NDRG1 in gastric cancer

