Review Article

Molecular markers prognosticate the aggressiveness of papillary thyroid cancer

Shuang-Shuang Zhao, Bao-Ding Chen, Zheng Zhang

Department of Medical Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China

Received January 18, 2018; Accepted October 12, 2018; Epub March 15, 2019; Published March 30, 2019

Abstract: Application of molecular markers in diagnosing and prognosticating thyroid cancer is of high clinical significance. These include BRAF^{V600E}, TERT and RAS mutations, PAX8/PPARγ rearrangement, and gene expression classifier (GEC). Molecular pathogenesis of thyroid cancer has been accepted, gradually, by the elucidation of the fundamental roles of several major signaling pathways and related molecular derangements. Although most papillary thyroid cancers (PTC) occupy higher TNM stages, 10-year overall survival rates have remained high. It seems that prognosticating the aggressiveness of PTC has more weight in diagnosis. However, to date, there is no unanimous consensus regarding prognosticating the aggressiveness of PTC using molecular markers. The present review aimed to illuminate the performance of molecular markers in predicting the aggressiveness of PTC, providing unprecedented opportunities for further research and clinical development of novel treatment strategies for this cancer.

Keywords: Aggressiveness, prognosticate, thyroid cancer, papillary, molecular

Introduction

Thyroid cancer (TC) is the most common endocrine malignancy worldwide, accounting for more than 95% of all endocrine malignancies [1]. The majority (> 90%) of TC are well differentiated thyroid cancer (DTC), consisting of papillary thyroid cancer (PTC) (> 80%) and follicular thyroid cancer (FTC) [2]. Approximately half of these patients have cervical lymph node metastasis (CLNM), with > 90% having occult micro-metastasis in lymph nodes [3]. According to the American Joint Committee on Cancer (AJCC) TNM staging system, the presence of lymph node metastasis (LNM) results in upstaging. However, the 10-year overall survival rate of PTC remains > 90%. Although PTC has a relatively slow growth rate and a high percentage of cure, achieved by the combination of surgery, radiiodine ablation, and TSH-suppressive therapy, it still retains the risk of recurrence and metastasis. The concept of molecular classification of cancer at a clinically relevant level has been accepted as an imminent reality.

Fine-needle aspiration (FNA) biopsies and cytological assessment have been a cornerstone of thyroid nodule management since the 1980’s [4]. This basic preoperative assessment has substantially reduced the number of diagnostic surgeries. In 15% to 30% of thyroid FNAs, the cytologic results are indeterminate, including atypia of undetermined significance/follicular lesions of undetermined significance (AUS/FLUS) and follicular neoplasm/suspicious for follicular neoplasms (FN/SFN), creating a dilemma for the clinical management of these patients [5]. The 2017 Bethesda System for Reporting Thyroid Cytopathology (TBSRTC) reaffirmed that every thyroid FNA report should begin with 1 of 6 diagnostic categories, the names of which have remain unchanged. The revised risks of malignancy are 10-30% in AUS/FLUS, 25-40% in FN/SFN, 50-75% in suspicious for malignancy (SFM), 97-99% in malignancy, and if non-invasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP) are considered a malignancy. Otherwise, the risks of malignancy are 6-18%, 10-40%, 45-60%, and 94-96%, respectively. In addition, the revised TBSRTC has recommended that the “usual management” of AUS/FLUS and FN/SFN incorporates the option of molecular testing [6]. Malignant nodules can be diagnosed using the categories of the TBSRTC, while invasive clini-
Molecular markers prognosticate PTC aggressiveness

Molecular markers diagnosing thyroid cancer

FNA is recommended for thyroid nodules which have suspicious ultrasound (US) signs, according to medical guidelines for clinical practice for the diagnosis and management of thyroid nodules updated by American Association of Clinical Endocrinologists (AACE), American College of Endocrinology (ACE), and Associazione Medici Endocrinologi (AME) in 2016 [7]. Diagnostic surgery (lobectomy or total thyroidectomy) is often performed to confirm whether a thyroid nodule is benign or malignant, whereas therapeutic surgery is performed to decrease the risk of cancer recurrence and mortality.

The accumulation of knowledge on diagnostic use of molecular markers has been reflected in the 2015 American Thyroid Association guidelines [8]. The great difficulty for more than 20 years has been to identify suitable molecular markers to guide surgery. At present, except for BRAF V600E mutation, RET promotor mutations, RAS mutation, and PAX8/PARy rearrangement, there are various molecular markers which can be used to improve the performance of FNA for patients that have indeterminate thyroid FNA results, reducing unnecessary surgeries (Table 1, [9-22]). The present review focused on large studies assessing molecular markers in FNA specimens with indeterminate cytological results. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were used as uniform statistical measures. Molecular markers with high sensitivity and NPV were considered to be ‘rule-out’ tests, including immunocytochemis-

Table 1. Summary of studies regarding diagnostic molecular markers on thyroid FNA specimens

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>N*</th>
<th>Malignant† (%)</th>
<th>Markers</th>
<th>Sensitivity (%)</th>
<th>NPV (%)</th>
<th>Specificity (%)</th>
<th>PPV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faroux et al.</td>
<td>1997</td>
<td>69</td>
<td>13</td>
<td>A</td>
<td>89</td>
<td>97</td>
<td>58</td>
<td>24</td>
</tr>
<tr>
<td>Umbricht et al.</td>
<td>2004</td>
<td>100</td>
<td>48</td>
<td>B</td>
<td>90</td>
<td>87</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>Saggiorato et al.</td>
<td>2005</td>
<td>125</td>
<td>60</td>
<td>C</td>
<td>100</td>
<td>100</td>
<td>82</td>
<td>78</td>
</tr>
<tr>
<td>Nikiforov et al.</td>
<td>2009</td>
<td>52</td>
<td>40</td>
<td>D</td>
<td>71</td>
<td>84</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Samija et al.</td>
<td>2011</td>
<td>142</td>
<td>20</td>
<td>E</td>
<td>79</td>
<td>91</td>
<td>53</td>
<td>28</td>
</tr>
<tr>
<td>Fadda et al.</td>
<td>2011</td>
<td>119</td>
<td>45</td>
<td>F</td>
<td>89</td>
<td>85</td>
<td>64</td>
<td>71</td>
</tr>
<tr>
<td>Nikiforov et al.</td>
<td>2011</td>
<td>513</td>
<td>24</td>
<td>G</td>
<td>61</td>
<td>89</td>
<td>98</td>
<td>89</td>
</tr>
<tr>
<td>Shen et al.</td>
<td>2012</td>
<td>68</td>
<td>65</td>
<td>H</td>
<td>89</td>
<td>79</td>
<td>79</td>
<td>89</td>
</tr>
<tr>
<td>Keutgen et al.</td>
<td>2012</td>
<td>72</td>
<td>31</td>
<td>I</td>
<td>100</td>
<td>100</td>
<td>86</td>
<td>73</td>
</tr>
<tr>
<td>Rossi et al.</td>
<td>2012</td>
<td>123</td>
<td>36</td>
<td>J</td>
<td>32</td>
<td>73</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Alexander et al.</td>
<td>2012</td>
<td>265</td>
<td>32</td>
<td>K</td>
<td>92</td>
<td>93</td>
<td>52</td>
<td>47</td>
</tr>
<tr>
<td>Nikiforov et al.</td>
<td>2014</td>
<td>143</td>
<td>24</td>
<td>L</td>
<td>90</td>
<td>96</td>
<td>93</td>
<td>83</td>
</tr>
<tr>
<td>Labourier et al.</td>
<td>2015</td>
<td>109</td>
<td>32</td>
<td>M</td>
<td>89</td>
<td>94</td>
<td>85</td>
<td>74</td>
</tr>
<tr>
<td>Lithwick-Yanai et al.</td>
<td>2017</td>
<td>150</td>
<td>26</td>
<td>N</td>
<td>98</td>
<td>99</td>
<td>78</td>
<td>62</td>
</tr>
</tbody>
</table>

FNA = fine needle aspiration; NPV = negative predictive value; PPV = positive predictive value; A = TPO immunocytochemistry; B = human telomerase mRNA; C = galectin 3 plus KRT19 plus HBME-1 immunocytochemistry; D = BRAF and RAS mutations, RET-PTC and PAX8-PAR rearrangements; E = galectin 3 plus HBME-1 immunocytochemistry; F = galectin 3 plus KRT19 plus HBME-1 immunocytochemistry; G = BRAF and RAS mutations, RET-PTC and PAX8-PAR rearrangements; H = four microRNA set (miR-30d, miR-146b, miR-187, miR-221) linear discrimination analysis; I = four microRNA set (miR-21, miR-197, miR-222, miR-328) support vector machine radial basis kernel model; J = BRAF V600E mutation; K = gene expression classifier (the expression of 167 genes); L = ThyroSeq v2 (point mutations in 13 genes and for 42 types of gene fusions); M = ThyGenX/ThyraMIR; N = RosettaGX Revea; *Number of indeterminate FNAB with histopathology correlation; †Percentage malignancy among indeterminate FNAB nodules.
Molecular markers prognosticate PTC aggressiveness

try combinations of protein markers, a set of four microRNAs, a complex gene expression classifier (GEC) (Afirma), a panel consisting of point mutations in 13 genes and for 42 types of gene fusions (ThyroSeq v2), two molecular tests for miRNA, mRNA, and DNA (ThyGenX/ThyraMIR), and a microRNA-based assay using quantitative RT-PCR (RosettaGX Revea). Molecular markers with high specificity and PPV were considered to be 'rule-in' tests, including genetic markers (mutations and rearrangements) which are believed to be the drivers behind many of the thyroid cancers [23]. Overall malignancy rates in these studies ranged from 13% to 65%. A panel of genetic makers, including BRAF\(^{V600E}\) mutation, TERT promoter mutations, RAS mutation, and PAX8/PPAR\(\gamma\) rearrangement, in a single-center unblinded study, yielded increased diagnostic sensitivities for TC to 88% for AUS and 87% for FN [15].

An algorithm was suggested, in this review, that incorporates US examination, cytology diagnosis, and molecular testing in the management of patients with thyroid nodules (Figure 1). The aim is to limit unnecessary surgery, to perform the least aggressive surgery achieving diagnostic or therapeutic goals, and to make the first surgery the last surgery. First, every patient with thyroid nodules should undergo US examinations. Every nodule needs to be assessed using the thyroid imaging reporting and data system (TIRADS) [24]. Nodules classified as TIRADS 1 or 2 with very low probability of malignancy should be monitored. Those defined as TIRADS 3, 4, or 5 should undergo ultrasound-guided (US-guided) FNA for cytological assessment. Afterward, molecular testing should be performed on the nodules with indeterminate FNA results, according to the TBSRTC. Nodules with indeterminate FNA cytology should be considered for molecular testing with high sensitivity and NPV (GEC). Those with negative results should be monitored without surgery as benign results. Otherwise, they should undergo the other molecular testing with high specificity and PPV (BRAF mutation). Nodules that are suspicious for malignancy should undergo the latter molecular testing. If they have the negative results, they should undergo a lobectomy. Positive results and PTC should undergo a thyroidectomy.

Molecular markers prognosticating papillary thyroid cancer

BRAF-gene mutation and PTC aggressiveness

BRAF-gene mutation is one of the most common mutations in PTC. It has been illuminated consistently. The aggressive roles of BRAF mutation in PTC can be explained by several molecular mechanisms, including its aberrant regulation of various signaling pathways, such as the MAP kinase pathway, NF\(\kappa\)B pathway, and RASSF1A pathway, upregulation of various prooncogenic molecules, and downregulation of various tumor suppressor genes [25]. BRAF is a serine-threonine kinase belonging to the family of RAF proteins, which are intracellular effec-

Figure 1. Algorithm for management of thyroid nodules based on US examination, FNA cytology, and molecular marker tests. US = Ultrasound; FNA = Fine-needle aspiration; AUS = Atypia of Undetermined Significance; FLUS = Follicular Lesion of Undetermined Significance; FN = Follicular Neoplasm; SFN = Suspicious for a Follicular Neoplasm; SMC = Suspicious for a Malignant Carcinoma; MC = Malignant Carcinoma; ND = Nondiagnostic; UNS = Unsatisfactory; NPV = Negative Predictive Value; PPV = Positive Predictive Value.
Molecular markers prognosticate PTC aggressiveness

Table 2. Summary of studies regarding BRAF-gene mutations in prognosticating PTC aggressiveness

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Country</th>
<th>N*</th>
<th>Mutation frequency (%)</th>
<th>Significant associations</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xing</td>
<td>2007</td>
<td>USA</td>
<td>3028 (meta-analysis; 28 studies)</td>
<td>50.0</td>
<td>A; B; C; D</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>Li et al.</td>
<td>2012</td>
<td>USA</td>
<td>6372 (meta-analysis; 32 studies)</td>
<td>50.9</td>
<td>B; C; D; E; F; G; H</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>Liu et al.</td>
<td>2014</td>
<td>China</td>
<td>14,170 (meta-analysis; 69 studies)</td>
<td>56.3</td>
<td>A; B; C; D; E</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>Li et al.</td>
<td>2015</td>
<td>China</td>
<td>3,437 (meta-analysis; 19 studies)</td>
<td>47.5</td>
<td>B; C; D; E</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>Zhang et al.</td>
<td>2016</td>
<td>China</td>
<td>25,241 (meta-analysis; 81 studies)</td>
<td>60.6</td>
<td>A; B; C; D; E; I</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>Liu et al.</td>
<td>2016</td>
<td>China</td>
<td>20,764 (meta-analysis; 63 studies)</td>
<td>57.6</td>
<td>A; B; C; D</td>
<td>Odds ratio</td>
</tr>
</tbody>
</table>

A = recurrence/persistence; B = lymph node metastasis; C = extrathyroidal extension (ETE); D = higher TNM stage; E = multifocality; F = absence of capsule; G = more aggressive histology subtype; H = tumor size; I = vascular invasion; *Number of patients with histopathology results.

 tors of the MAPK signaling cascade. Their activation is triggered by RAS binding and protein recruitment to the cell membrane, followed by phosphorylation and activation of downstream targets along the MAPK cascade [26]. BRAF mutation leads to constitutive activation of BRAF kinase and chronic stimulation of the MAPK pathway. It is tumorigenic for thyroid cells [27]. BRAF mutation also uniquely downregulates thyroid iodide-metabolizing genes, such as sodium-iodide symporter (NIS) [25]. NIS explains the initial finding of the association of BRAF^{V600E} mutation with the loss of radiiodine avidity, leading to radiiodine treatment failure in PTC [28].

BRAF^{V600E}, the most common oncogene in PTC, with a higher specificity and absence in benign thyroid nodules, has been reported to have a role of prognosticating the aggressiveness of PTC. BRAF^{V600E} mutation has been widely studied in TC and has been considered to have a significant association with aggressive biologic behavior. Garcilaso Riesco-Eizaguirre et al. suggested that BRAF^{V600E} mutation in PTC can promote epithelial to mesenchymal transition. Aggressiveness based on the operation of an autocrine transforming growth factor (TGF) β loop, which leads to repressing the function of NIS and subsequent radiiodide-refractory metastatic, can also be increased. This high TGFβ/Smad activity has been associated with PTC invasion, nodal metastasis, and BRAF^{V600E} status disease [28]. A retrospective investigation of 1,849 patients and a study of 653 patients revealed that BRAF^{V600E} promotes aggressive tumor behaviors, such as LNM, tumor invasion, and distant metastasis. It silences thyroid iodide-metabolizing genes and renders the tumor resistant to radiiodine treatment. It also expedites tumor progression, resulting in aggravated risk of PTC-related mortality [29, 30]. It is worth noting that even in conventionally low-risk TNM stage disease and papillary thyroid microcarcinoma (PTMC), BRAF^{V600E} mutation still has a significant association with recurrence. This has been confirmed in a smaller study [31].

In Table 2 [32-37], six large meta-analyses were collected to analyze significant associations of BRAF^{V600E} mutation in PTC. The prevalence of this mutation ranged from 47.5% to 60.6% in Table 2. According to these analyses, many risk factors were found to be associated with BRAF^{V600E} mutation, including recurrence/persistence, LNM, ETE, higher TNM stage, multifocality, absence of capsule, more aggressive histology subtype, tumor size, and vascular invasion. However, there was no significant association between the presence of BRAF^{V600E} mutation and distant metastasis in all six meta-analyses. It was further confirmed that LNM, ETE, and higher TNM stage were significantly associated with BRAF^{V600E} mutation, depending on the meta-analyses. It is not known why different incidences of BRAF^{V600E} mutation were reported among different studies. It may
be associated with the different methods, races, and areas.

TERT promoter mutations and PTC aggressiveness

Two mutations (C228T and C250T) in the promoter region of the telomerase reverse transcriptase (TERT) have recently been described in different types of cancer. They were first described in thyroid cancer in 2013 [38]. Cells develop mechanisms that protect the telomere length from excessive shortening with each cell division to overcome the Hayflick limit and become immortal [39]. Telomeres are mostly maintained by TERT, alternative mechanisms independent of telomerase that are sometimes utilized for telomere lengthening [40]. Telomerase, itself, is a nucleoprotein complex with many proteins and RNA. Normal cells and benign adenomas rarely have increased expression of telomerase, but self-renewing cells, such as stem and fetal cells, frequently have increased amounts of telomerase [41].

Consistent with the roles of TERT C228T in poor clinicopathologic outcomes of PTC were recent reports of the association of TERT promoter mutations with brain tumor-associated patient mortality [42], bladder cancer recurrence [43], and poor survival of patients with laryngeal cancer [44]. At the same time, a significant interest in TERT promoter mutations has developed and several publications have been generated over the last 5 years (Table 3, [30, 46-51]). The prevalence of TERT promoter mutations in PTC varied between 4.1% and 25.5%, according to these large cohorts of different racial studies. TERT promoter mutations were found to be associated with poor clinicopathological outcomes of PTC, including recurrence/persistence, LNM, ETE, higher TNM stage, capsule invasion, tumor size, vascular invasion, distant metastasis, and BRAFV600E mutation. LNM is the only risk factor of TERT promoter mutations appearing in every study. Patients with PTC harboring TERT promoter mutations were submitted to more radioiodine treatments with higher cumulative doses and to more treatment modalities in one research. The study of Liu et al. showed no association of TERT promoter mutations with high iodine intake [46, 47]. Large studies from different ethnic backgrounds [30, 46-49, 51], taken together, strongly support the existence of an associative relationship of TERT promoter mutations with several conventional high-risk factors for poor prognosis of PTC, including older patient age, ETE, and higher TNM stage of PTC.

PTMCs are usually indolent lesions with a low rate of growth and low metastatic potential. However, a significant percentage of PTMCs behave aggressively. De Biase et al. analyzed the occurrence of TERT promoter mutations in a large cohort of PTMCs to discriminate aggressive PTMCs from those with an indolent course, avoiding overtreatment and long-term surveillance. They found that recurrence/persistence, LNM, higher TNM stage, and BRAFV600E mutation in PTMCs were associated with TERT promoter mutations [50].

Several studies have shown co-existing BRAFV600E and TERT promoter mutations form a novel genetic background that defines PTC with
the worst clinicopathologic outcomes, providing unique prognostic and therapeutic implications [38, 45, 47, 48]. Sensitivity increases significantly when TERT promoter mutation testing is combined with other gene mutations, particularly $\text{BRAF}^{\text{V600E}}$ and RAS mutations [30]. Another study proposed a four-genotype risk stratification system for PTC. They concluded a risk order: $\text{BRAF}^{\text{V600E}}$/RAS mutation and TERT promoter mutations >>> $\text{BRAF}^{\text{V600E}}$ mutation alone = TERT promoter mutations alone > RAS mutation alone = wild-type genes [52]. However, in another study, the concurrence or co-existence of TERT and $\text{BRAF}^{\text{V600E}}$ mutations showed no association with increased aggressiveness and worse outcomes compared with the presence of TERT promoter mutations alone [46]. Recent findings on TERT promoter mutations in thyroid cancer are exciting. However, they should be confirmed and generalized by future high-powered studies.

RAS mutation and PTC aggressiveness

The family of human RAS genes includes HRAS, KRAS, and NRAS genes. Point mutations in 1 of the 3 RAS genes are currently the second-most common genetic alteration in thyroid cancer [53]. They encode highly related G proteins that are located at the inner surface of the cell membrane. They propagate signals arising from cell membrane receptor tyrosine kinase and G-protein-coupled receptors along the MAPK, PI3K/AKT, and other signaling pathways. Although RAS is a classical dual activator of MAPK and PI3K-AKT pathways, RAS mutations seem to preferentially activate the PI3K-AKT pathway in thyroid tumorigenesis, as suggested by the preferential association of RAS mutations with AKT phosphorylation in thyroid cancers [54, 55]. Activating point mutations in the discrete domains of the RAS genes (codons 12/13 and 61) are common in different types of human tumors. Types KRAS codon 12/13 mutations predominate in most cancer, while NRAS codon 61 and HRAS codon 61 involve the most frequent mutations in thyroid tumors. RAS mutations are found with variable frequency in all types of thyroid follicular cell-derived tumors [26]. RAS mutations occur in 30-45% of PTC and are frequently found in encapsulated follicular variants of papillary carcinoma, a tumor with indolent behavior [56, 57].

Many studies have found a significant correlation between RAS mutations and metastatic behavior of PTC, especially concerning bone metastases. RAS mutations apparently predispose the well-differentiated cancer to dedifferentiation and more aggressive behavior [58-60]. It is likely that RAS mutations mark a subset of widely invasive PTC, prone to metastatic spread and dedifferentiation. However, these mutations cannot be used as universal prognostic markers for all types of thyroid tumors. It has also been suggested that RAS mutations may confer a more aggressive phenotype in some cases, increasing patient risks for tumor recurrence, distant metastases, and death [61, 62].

PAX8/PPARγ rearrangement and PTC aggressiveness

PAX8/PPARγ is a gene rearrangement occurring as a result of $\text{t}(2; 3)(q13; p25)$ translocation. With the translocation, fusion between the paired box 8 (PAX8) gene and the peroxisome proliferator–activated receptor–activated receptor-γ (PPARγ) gene takes place [63]. The rearrangement results in overexpression of the PPARγ protein and exerts a dominant-negative effect on the wild-type tumor suppressor PPARγ. It encodes a copying factor required for the proliferation of follicular thyroid cells [64]. This rearrangement can be found in many kinds of TCs, such as conventional-type follicular carcinoma, and follicular variants of papillary carcinoma and follicular adenoma. The prevalence of PAX8/PPARγ rearrangement in follicular variants of papillary carcinoma is less than 5% in most populations, while the prevalence was as high as 38% in one study [65, 66]. Although the prevalence is up to 60% in FTA, PAX8/PPARγ rearrangement is uncommon in benign thyroid lesions and its oncogenic roles remain unclear [67].

Past studies have demonstrated that tumors presenting a PAX8/PPARγ rearrangement are seen in younger patients and are associated with tumorous characteristics, such as small size, solid/nested growth patterns, and a tendency to cause vascular invasion more frequently [68]. Detection of PAX8/PPARγ rearrangement in a follicular lesion cannot fully diagnose malignancy by itself, but it should prompt the pathologist to perform an exhaus-
Molecular markers prognosticate PTC aggressiveness

tive search for vascular or capsular invasion. Though it may not be seen at first, the invasion is found in many PAX8/PPARγ-positive follicular tumors after examination of the entire capsule in multiple histologic levels [66, 69]. PAX8/PPARγ rearrangement can be detected in thyroid FNA samples. This typically correlates with the presence of malignancy, although only a few positive cases have been reported in prospective studies [12, 70].

Conclusion

In recent years, many genetic mutations and other molecular alterations associated with PTC have been discovered and characterized. These alterations, particularly specific mutations, can be reliably detected by molecular techniques in thyroid surgical samples or in cells collected by FNA of thyroid nodules. The most extensive experience has been accumulated with the diagnostic use of BRAFV600E mutation. It is highly specific for PTC when well-validated techniques are used. Moreover, the algorithm proposed in Figure 1 may help to avoid unnecessary surgery or help with deciding the extent of surgery for patients with indeterminate FNA results. Cost-effectiveness analyses, however, have not been done for every molecular testing. Whether the algorithm presented in the previous paper is cost-effective remains to be systematically analyzed.

The biggest diagnostic impact can be achieved by testing FNA samples for a panel of mutations/rearrangements, typically including BRAFV600E, TERT, RAS, and PAX8/PPARγ. Finding any of these mutations/rearrangements in a thyroid nodule provides a strong indication of the aggressiveness. In addition, these findings may help to refine clinical management for a significant proportion of patients with indeterminate cytology.

Various clinicopathological risk factors have been reported to be related to recurrence and cancer death in PTC. According to most meta-analyses results, there was significant association between aggressiveness and molecular markers (BRAFV600E mutation, TERT promoter mutations), as shown in Tables 2 and 3. LNM, ETE, and higher TNM stage were chosen as reliable predictors for poor prognosis in this review, as these factors not only represent aggressive behavior of cancer but also poor prognosis [32]. LNM is an important risk factor for recurrence and/or persistent disease, as well as overall survival. ETE has been associated with an increased risk of invasion into cervical structures, such as the trachea, which requires more aggressive treatment. Accordingly, ETE is an important factor related to PTC prognosis, contributing to an increased risk of local recurrence/persistence of the disease. Higher TNM stage cancers have been associated with a poorer prognosis in terms of both recurrence and overall survival than lower TNM stage tumors [71]. According to meta-analyses results, there is a significant association between high TNM stage and BRAFV600E mutation. Based on these results, it is suggested that the presence of BRAFV600E, TERT, RAS, and PAX8/PPARγ mutations/rearrangements are poor prognosis factors for PTCs. However, it is worth mentioning that different surgical approaches and treatments used in different countries may have influenced outcomes in terms of real incidence of nodal metastasis. Therefore, caution should be exercised when evaluating these molecular markers as prognostic indicators for aggressiveness in PTCs.

Methylation aberrations of genes and consequent alterations in their expression are fundamental molecular mechanisms in the tumorigenesis of human cancers [72]. A prominent epigenetic mechanism was discovered in 2011, through which BRAFV600E can promote PTC tumorigenesis by altering methylation and, hence, the expression of numerous important genes [73]. Recently, one study revealed that Wiskott-Aldrich syndrome protein (WASP) interacting protein family member 1 (WIPF1) functions like an oncoprotein to robustly promote invasive cellular and tumor behaviors of PTC. Moreover, BRAFV600E-activated MAP kinase pathways cause hypomethylation and overexpression of WIPF1 [74].

In conclusion, the presence of BRAFV600E, TERT, RAS, and PAX8/PPARγ mutations/rearrangements is significantly associated with high-risk clinicopathological factors and poor clinical outcomes, predicting the aggressiveness of PTCs. The present study aimed to provide significant and useful information for health-care system decision-makers, with a goal of avoiding unnecessary surgical risks and costs for PTC patients.
Molecular markers prognosticate PTC aggressiveness

Disclosure of conflict of interest
None.

Address correspondence to: Bao-Ding Chen, Department of Medical Ultrasound, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Jingkou District, Zhenjiang 212001, China. Tel: 135-1169-6205; E-mail: alphalife@163.com

References

Molecular markers prognosticate PTC aggressiveness

Molecular markers prognosticate PTC aggressiveness
Molecular markers prognosticate PTC aggressiveness

[55] Liu Z, Hou P, Ji M, Guan H, Studeman K, Jensen K, Vasko V, El-Naggar AK and Xing M. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-Ki-
nase/Akt and mitogen-activated protein ki-
nase pathways in anaplastic and follicular thy-

[56] Xing M, Haugen BR and Schlumberger M. Prog-
ress in molecular-based management of differ-

[57] Parlea L, Fahim L, Munoz D, Hanna A, Andersen J, Cusimano M, Kovacs K, Gardiner G. Fol-
licular carcinoma of the thyroid with aggressive metastatic behavior in a pregnant woman: re-
port of a case and review of the literature. Hor-

[58] Fagin JA. Miniireview: branded from the start-
distinct oncogenic initiating events may deter-

roid carcinomas: correlation with bone metas-
tases and inverse correlation to thyroglobulin expression. Thyroid 2009; 10: 19-23.

[62] Miller KA, Yeager N, Baker K, Liao XH, Refetoff S and Di Cristofano A. Oncogenic kras requires simultaneous PI3K signaling to induce ERK ac-

[63] Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM and Fletcher JA. PAX8-
PPARY1 fusion in oncogenic human thyroid car-

dum-Skelin I, Kloboves V, Kobayashi TK, Kout-
thology 2006; 17: 219-226.

[65] Castro P, Rebocho AP, Soares RJ, Magalhães J, Roque L, Trovisco V, Vieira de Castro I, Cardo-
so-de-Oliveira M, Fonseca E, Soares P and Sobrinho-Simões M. PAX8-PPARγ rearrange-
ment is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 2006; 91: 213-220.

[66] Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG and Nikiforov YE. PAX8-PPARγ rearrange-
ment in thyroid tumors: RT-PCR and immuno-

[67] Eberhardt NL, Grebe SK, McIver B and Reddi HV. The role of the PAX8/PPARgamma fusion oncogene in the pathogenesis of follicular thy-

[68] Sahpaz A, Onal B, Yesilyurt A, Han U and Deli-
basi T. BRAF (V600E) Mutation, RET/PTC1 and PAX8-PPAR gamma rearrangements in follicu-
lar epithelium derived thyroid lesions - institu-

1060.

[70] Ohori NP, Nikiforova MN, Schoedel KE, LeBeau SO, Hodak SP, Seethala RR, Carty SE, Ogilvie JB, Yip L and Nikiforov YE. Contribution of mo-
lecular testing to thyroid fine-needle aspiration cytology of “follicular lesion of undetermined significance/atypia of undetermined signifi-
cance”. Cancer Cytopathol 2010; 118: 17-23.

[73] Hou P, Liu D and Xing M. Genome-wide alterations in gene methylation by the BRAF V600E mutation in papillary thyroid cancer cells. Endoc-
Cancer 2011; 18: 687-697.

[74] Zhang T, Shen X, Liu R, Zhu G, Bishop J and Xing M. Epigenetically upregulated WIPF1 plays a major role in BRAF V600E-promoted papillary thyroid cancer aggressiveness. Onco-
target 2017; 8: 900-914.