Original Article

LncRNA CRNDE promotes hepatocellular carcinoma cell proliferation and upregulates cyclin D1 expression

Liying Zhu¹*, Yanan Di²*, Guoqi Liu¹, Chengcheng Li², Wei Pan¹, Xing Li¹

¹Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, R. P. China; ²Department of Clinical Laboratory Medicine, Beifang Hospital of China North Industries Group Corporation, Beijing, R. P. China. *Equal contributors.

Received November 27, 2017; Accepted May 9, 2018; Epub July 15, 2018; Published July 30, 2018

Abstract: Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths. CRNDE is the most highly expressed IncRNA in HCC, suggesting that CRNDE may be involved in the development and biological behavior of HCC. However, the underlying mechanisms by which CRNDE promotes cell proliferation are still largely unclear. This present study reports that CRNDE was upregulated in HCC tissues and cells. In situ hybridization assay showed that CRNDE specific staining was observed in the nucleus of SMMC7721 and HepG2 cells. Furthermore, overexpression of CRNDE significantly enhanced cell proliferation and upregulated cyclin D1 expression, whereas short hairpin RNA knockdown of CRNDE caused inhibition of cell proliferation and downregulation of cyclin D1. CRNDE may serve as a candidate prognostic biomarker and target for new therapies targeting human HCC.

Keywords: Hepatocellular carcinoma, CRNDE, cell proliferation, cyclin D1

Introduction

Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths. Numerous studies have reported that long non-coding RNA (lncRNA) colorectal neoplasia differentially expressed (CRNDE) is activated early in colorectal neoplasia. It is also upregulated in many other solid tumors. CRNDE is overexpressed in a variety of other tumor cells such as lung adenocarcinoma and gastric cancer cells [1-4]. CRNDE is the most highly expressed lncRNA in HCC, suggesting that CRNDE may be involved in the development and biological behavior of HCC [5-7]. However, the underlying mechanisms by which CRNDE promotes cell proliferation are still largely unclear.

This study investigated expression and the role of CRNDE in HCC. It was demonstrated that CRNDE levels were remarkably upregulated in HCC tissues. CRNDE promoted HCC cell proliferation. Additionally, overexpression of CRNDE induced cell cycle progression by accelerating G1/S and G2/M transition concomitantly with upregulation of cyclin D1.

Materials and methods

HCC tissue samples and cells culture

Ten pairs of tumor and adjacent non-tumor tissues were collected from surgical resections of HCC in the Affiliated Hospital of Guizhou Medical University. Specimens were snap-frozen in liquid nitrogen and stored at -80°C. All patients received surgery, without preoperative chemotherapy or radiation therapy. All patients provided written informed consent and ethical consent was granted from Committees for Ethical Review of Research of the Affiliated Hospital of Guizhou Medical University (Gui-zhou, China).

Human hepatocellular carcinoma (HCC) cell lines (SMMC7721, SK-hep1, Huh7 and HepG2), human immortalized normal human liver cell line (L02), and embryonic kidney cell line (293T) were obtained from the Chinese Academy of Sciences Cell Bank. They were cultured in Dulbecco’s Modified Eagle Medium (DMEM) of high glucose with 10% fetal bovine serum (FBS, BI, ISR). All cells were incubated at 37°C in a humidified atmosphere with 5% CO₂.
CRNDE promotes proliferation and upregulates cyclin D1

RNA extraction and qRT-PCR
Total RNA was isolated with TRIzol Reagent (Invitrogen, Carlsbad, CA) and treated with RNase-free DNase (Promega, USA). For CRNDE, first-strand cDNA was generated using PrimeScript RT reagent kit with gDNA Eraser, according to manufacturer instructions (TaKaRa). Primers used were 5'-ATATTCAG CCGTTGTTTGA-3' (forward) and 5'-TCTGCGTGA-CAACTGAG GAT TT-3' (reverse). GAPDH was used for normalization and the primers were 5'-CGACCACTTTGTCAAGCTCA-3' (forward), 5'-AGGGGTCTACATGGCAAC TG-3' (reverse). The other forward and reverse primers of qRT-PCR were as follows: cyclin D1-F: 5'-GTTCGTGGCCTCTAAGATGAAG-3', cyclin D1-R: 5'-GATGGAGTTGTCGGTGTAGATG-3'. All quantitative real-time polymerase chain reaction (qRT-PCR) samples were performed using UltraSYBR mixture (Cwbio, China) and conducted using CFX Connect TM real-time PCR system (Bio-Rad). Quantification analysis was analyzed by the 2^-ΔΔCT method.

In situ hybridization
In situ hybridization was used for detection in cell lines with probes targeting CRNDE, following manufacturer protocol. Signals were detected using Fluorescein (FITC)-conjugated Affinipure Goat Anti-Rabbit IgG(H+L) (SA00-003-2, Proteintech, Wuhan, China) at 37°C for 30 minutes. Nuclei were counterstained with DAPI. Immunofluorescence was then detected under FV1000 fluorescence microscope (Olympus, Tokyo, Japan).

Western blot analysis
Cells were lysed in RIPA Buffer (Beyotime, China) and supplemented with 1 mmol/L PMSF. Protein concentration was measured by BCAA-assay Kit (Beyotime, China). Proteins were separated on a 10-12% SDS-PAGE gel and then transferred to PVDF membranes. Membranes were blocked with 5% milk, incubated overnight at 4°C with a primary rabbit antibody against cyclin D1 (1:500 dilution, Bioword), and washed three times in TBST. Blots were then incubated with a goat anti-rabbit or anti-mouse HRP secondary antibody (Bioword, USA, 1:1000 dilution). Finally, ECL Detection Reagent (Millipore, Billerica, MA) was used for signal detection. Data were normalized to GAPDH (1:2000, Pro-teintech).

Plasmids, short-hairpin (sh) RNA, and transfection
pcDNA3.1-CRNDE was purchased from GenePharma (Shanghai, China). Short-hairpin RNA targeting human CRNDE were ligated into the pGreenPuro shRNA vector (SBI, USA) according to manufacturer protocol. Transfections were performed with a Lipofectamine 2000 kit (Invitrogen, Carlsbad, CA), according to manufacturer instructions. Cells were harvested 48-72 hours after transfection.

MTS assay
Cells (2000 cells/well) were seeded into 96 well plates, after 24 hours of transfection, and measured at different time points (0, 24, 48 and 72 hours) using the MTS kit (Cell Titer 96® Aqueous One Solution Cell Proliferation Assay, Promega, USA), followed manufacturer protocol. The 490 nm wave-length absorption value was measured. All experiments were performed in triplicate and repeated 3 times.

Colony formation assay
Cells (1 × 10^5 cells/well) were seeded into 6-well plates, after 24 hours of transfection, and cultured for 4 days, while 4% paraformaldehyde was used to fix with cells. Cells were then stained with a Crystal Violet cell colony staining kit (GenMed Sciences), according to manufacturer instructions.

Cell cycle analysis
Cells were harvested and washed twice with PBS. After bein fixed in 70% ice-cold ethanol and kept overnight at 4°C, cells were stained with propidium iodide supplemented with RNaseA (Keygen Biotech) for 30 minutes at 37°C. DNA content of labeled cells was acquired using FACS cytometry (BD Biosciences Inc., Franklin Lakes, NJ, USA). Each experiment was performed in triplicate.

Immunohistochemistry
Immunohistochemistry for Ki-67 was performed on paraffin sections using a primary antibody against Ki67 (Pro-teintech) and horserad-
CRNDE promotes proliferation and upregulates cyclin D1

ish peroxidase-conjugated rabbit anti-goat antibody (Maixin, Fuzhou, China). Proteins in situ were visualized with 3, 3-diaminobenzidine and analyzed using a bright field microscope.

Statistical analysis

SPSS 17.0 software (SPSS Inc., Chicago, IL, USA) and GraphPad software (GraphPad Software, Inc., La Jolla, CA, USA) were used to analyze all data for statistical significance. Two-tailed Student's t-test was used for comparisons of two independent groups. Statistical significance was set at *P < 0.05, **P < 0.01. P < 0.05 was considered statistically significant.

Results

CRNDE and Ki67 significantly upregulated in HCC

Expression of CRNDE, in 10 paired HCC tissues (T) and non-tumor tissues (N), was examined by quantitative real time RT-PCR (qRT-PCR). It was found that CRNDE expression was higher in 10 paired HCC tissues than non-tumor tissues...
CRNDE promotes proliferation and upregulates cyclin D1

Furthermore, the results indicated that CRNDE was obviously upregulated in HCC cell lines (SMMC7721, Huh7, SK-hep1 and HepG2) compared with that in normal liver cell line L02 (Figure 1B).

Immunohistochemistry analysis of the tumor tissues revealed that expression of Ki67 proliferation antigen was significantly stronger in tissues (T) than non-tumor tissues (N) (Figure 1C, 1D). Next, in situ hybridization assay was performed on HCC cells with results showing that CRNDE specific staining was observed in the nucleus of SMMC7721 and HepG2 cells (Figure 1E). SMMC7721 and HepG2 cells were selected for functional experiments. First, the effect of overexpression of CRNDE (pcDNA3.1-CRNDE) and knockdown of CRNDE (sh-CRNDE) were assessed. It was found that CRNDE was drastically increased after transfection with pcDNA3.1-CRNDE plasmid and obviously decreased after transfection with sh-CRNDE plasmid for 48 hours (Figure 1F).

CRNDE promotes cell proliferation in HCC

To determine proliferation of CRNDE in HCC cells, a pcDNA3.1-CRNDE plasmid that could overexpress CRNDE and knockdown of CRNDE (sh-CRNDE) was constructed. MTS assay results verified that overexpression of CRNDE significantly increased cell proliferation and knockdown of CRNDE dramatically suppressed cell proliferation rate, compared with con-
CRNDE was upregulated in HCC CRNDE promotes proliferation and upregulates cyclin D1.

**Figure 3.** CRNDE induces cell-cycle progression in HCC cells. A. Cell-cycle analysis of HepG2 and SMMC-7721 cells overexpressing CRNDE and stably silenced CRNDE expression. B. Proportion of cells in various phases of the cell cycle. **P < 0.01, *P < 0.05.**
CRNDE promotes proliferation and upregulates cyclin D1

Figure 4. CRNDE upregulated cyclin D1 expression in HCC cells. A. qRT-PCR analysis of cyclin D1 mRNA expression when SMMC7721 and HepG2 cells were transfected with pcDNA3.1-CRNDE or sh-CRNDE. Transcript levels were normalized to GAPDH expression. **P < 0.01, *P < 0.05. B, C. Western blot analysis of CRNDE regulated expression of cyclin D1, using GAPDH as endogenous control. **P < 0.01.

Discussion

HCC is one of the most common cancers worldwide with high prevalence and lethality [8]. Multiple evidences have illustrated that aberrant lncRNA expression is engaged in various cancers. Targeted therapies, applying lncRNA as a novel diagnostic and therapeutic tool, have obtained more and more attention, including MALAT1 [9], H19 [10], and HANR [11]. CRNDE, a long-noncoding RNA, promotes glioma cell growth and invasion through mTOR signaling [12]. Highly expressed lncRNA CRNDE promotes cell proliferation, through Wnt/beta-catenin signaling, in renal cell carcinoma [4]. Long noncoding RNA CRNDE promotes multiple myeloma cell growth by suppressing miR-451 [3]. Long noncoding RNA CRNDE, stabilized by hnRNPUL2, has accelerated cell proliferation and migration in colorectal carcinoma via activating Ras/MAPK signaling pathways [13]. Long noncoding RNA CRNDE activates Wnt/beta-catenin signaling pathways through acting as a molecular sponge of microRNA-136 in human breast cancer [14]. LncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulat-
CRNDE promotes proliferation and upregulates cyclin D1

CRNDE promotes proliferation and upregulates cyclin D1 [15]. This present study found that CRNDE was remarkably increased in HCC tissues. Overexpression of CRNDE promoted, while knockdown of CRNDE suppressed, HCC cell proliferation in vitro, consistent with previous studies.

CIAPIN1 inhibits gastric cancer cell proliferation and cell cycle progression by downregulating cyclin D1 and upregulating P27 [16]. Upregulation of cyclin D1 and Bcl2A1 by insulin is involved in osteoclast proliferation [17]. Overexpression of CARM1 promotes human osteosarcoma cell proliferation through pGSK3beta/beta-Catenin/cyclin D1 signaling pathways [18]. Cyclin D1 belongs to the cyclin protein family and has three subtypes: D1, D2 and D3. Among them, D1 has been strongly associated with cancer. Cyclin D1 is dominant at G0/G1 phase and is synthesized at G1 phase. It, then, forms cyclin D1-CDK4 or cyclin D1-CDK6 complexes, activates CDK, and phosphorylates the key substrate retinoblastoma gene (Rb), enabling cells to enter S phase through the restriction point. Upregulated expression of cyclin D1 promotes phosphorylation of pRb and accelerates entry into S phase, resulting in promoted cell proliferation [19]. To the best of our knowledge, this current research is the first to offer evidence for a novel mechanistic correlation between CRNDE and cyclin D1 in HCC. Moreover, this study demonstrates that overexpression of CRNDE upregulates expression of cyclin D1 while knockdown of CRNDE suppresses expression of cyclin D1.

In summary, these findings show that lncRNA CRNDE was upregulated in HCC tissues and cells. Promotion of CRNDE on HCC cell proliferation and tumorigenesis may partly be through epigenetically inducing cyclin D1. These results reveal that CRNDE functions as one of the oncogenes in HCC and might be regarded as a critical target and therapeutic tool for HCC in clinical application. However, other possible mechanisms by which CRNDE participates in the biological function of HCC cells are not fully understood.

Acknowledgements

This work was supported by grants from the Science and Technology Foundation of Guizhou Province ([2016]1123), the Science and Technology Cooperation Projects of Guizhou Province ([2014]7005), and funds from the Department of Medical Laboratory, Guizhou Medical University.

Disclosure of conflict of interest

None.

Address correspondence to: Xing Li and Wei Pan, Department of Medical Laboratory, Guizhou Medical University, 9 Beijing Road, Yunyan District, Guiyang 550004, Guizhou, P. R. China. Tel: 0851-4822637; E-mail: lixingsci@sina.com (XL); pw_6602@sina.com (WP)

References

CRNDE promotes proliferation and up regulates cyclin D1 potentially by its promoter methylation. Gene 2018; 641: 78-85.


