Pax2 expression correlates with EMT markers in an experimental model of obstructive nephropathy

Li Li1, Hai-Sheng Xu1, Yu-Bin Wu2, Xiao-Ming Kang1, Jun Yang3, Xian-He Wang1, Qing-Yun Meng1, Chang-Shan Wang4

1Department of Pediatrics, First Affiliated Hospital of Jiamusi University, Jiamusi 154002, China; 2Department of Pediatric Nephrology, Shengjing Hospital, China Medical University, Shenyang 110004, China; 3Department of Cardiovascular Medicine, First Affiliated Hospital of Jiamusi University, Jiamusi 154002, China; 4College of Basic Medicine, Jiamusi University, Jiamusi 154007, Heilongjiang, China

Received October 7, 2017; Accepted May 16, 2018; Epub July 15, 2018; Published July 30, 2018

Abstract: Introduction: This study investigated the role of PAX2 reexpression during tubular epithelial-mesenchymal transition (EMT) in a unilateral ureteral obstruction (UUO) rat model. Methods: Wistar rats were randomly designated into the sham group and UUO model group, and their kidneys were removed for histological evaluation of renal damage. The mRNA and protein levels of PAX2, E-cadherin and α-SMA were then quantified. In addition, the expression of PAX2, E-cadherin and α-SMA protein was detected by immunohistochemical analysis. Results: The kidneys of rats from the UUO group revealed significantly higher histological injury scores (6.17 ± 0.86) and larger areas of renal interstitial collagen deposition (33.75 ± 2.37%) compared with the sham group at 14 days (0.15 ± 0.10 and 1.78 ± 0.37%, respectively, both P < 0.05). UUO led to a rapid increase in PAX2 mRNA and protein expression, accompanied with a down-regulation of the epithelial marker E-cadherin and an up-regulation of the mesenchymal marker α-SMA (P < 0.05). Immunohistochemical double staining of these samples revealed enlarged areas that stained positively for both PAX2 and α-SMA, but showed decreased E-cadherin expression. The protein levels of PAX2 in renal tubules was positively associated with α-SMA expression (r = 0.977, P < 0.05) and negatively associated with E-cadherin (r = -0.984, P < 0.05). Conclusion: PAX2 is re-expressed in the renal tubular epithelial cells following obstructive nephropathy, and may participate in EMT during renal interstitial fibrosis.

Keywords: Unilateral ureteral obstruction, epithelial-mesenchymal transition, renal interstitial fibrosis, paired box 2 gene

Introduction

Renal interstitial fibrosis (RIF) is the final manifestation of chronic kidney disease (CKD), which leads to renal failure [1, 2]. RIF is characterized by inflammatory cell infiltration, the accumulation of extracellular matrix (ECM) compounds, as well as fibroblast activation and proliferation [3, 4]. Renal interstitial cells are a heterogeneous population that contains fibroblasts, dendritic cells, and lymphocytes, in addition to other cell types. Long-term activation of renal interstitial fibroblasts results in excessive ECM accumulation, ultimately causing chronic renal fibrosis, perturbed parenchymal tissue structure, and impaired organ function.

Tubular epithelial-mesenchymal transition (EMT) is a known initiator of RIF [5-7]. EMT is a process in which renal tubular cells lose their epithelial phenotype, involving downregulation of E-cadherin, and instead acquire phenotypic characteristics of mesenchymal cells, such as expression of α-smooth muscle actin (α-SMA) [6, 8]. During EMT, tubular epithelial cells lose their contact with neighboring cells and underlying basement membrane, migrate and invade the interstitium where they ultimately turned into activated fibroblasts [9]. Although EMT contributes to renal fibrosis and causes a reduction in renal parenchyma, the cellular mechanisms that regulate tubular EMT have yet to be fully elucidated.

In the kidney organogenesis, a series of morphogenetic and differentiation events start, so that the mesenchymal blastema is induced to undergo mesenchymal-to-epithelial transi-
Pax2 is upregulated in obstructive nephropathy

Table 1. Real-time PCR primers

<table>
<thead>
<tr>
<th>Genes</th>
<th>Primers</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAX2-F</td>
<td>5'-CGGTGAGAAGAGAAACGAG-3'</td>
<td>246 bp</td>
</tr>
<tr>
<td>PAX2-R</td>
<td>5'-GGCTGGAAGACATCGGGATA-3'</td>
<td></td>
</tr>
<tr>
<td>E-cadherin-F</td>
<td>5'-CTTCTCACCCTCTTCTT-3'</td>
<td>111 bp</td>
</tr>
<tr>
<td>E-cadherin-R</td>
<td>5'-TCTCCAGCCTCGCCATCGGGAAAC-3'</td>
<td></td>
</tr>
<tr>
<td>α-SMA-F</td>
<td>5'-AGCCAGTGCACCACACAG-3'</td>
<td>90 bp</td>
</tr>
<tr>
<td>α-SMA-R</td>
<td>5'-CGGGAGCCATTGTCAACACAC-3'</td>
<td></td>
</tr>
<tr>
<td>GAPDH-F</td>
<td>5'-GGCACAGTCAAGGCTGAGAATG-3'</td>
<td>143 bp</td>
</tr>
<tr>
<td>GAPDH-R</td>
<td>5'-ATGGTGAGACGACCAG-3'</td>
<td></td>
</tr>
</tbody>
</table>

Surgical procedures and sample preparation

All surgery was performed under sodium pentobarbital anesthesia, and all efforts were made to minimize suffering. After anaesthetized, the left ureter was identified through a small suprapubic incision and was ligated with 4-0 suture at two points, and then cut between the two points in order to prevent retrograde infection. Operations performed on the sham group excluded the ureteral ligation and cutting steps. At day 3, 5, 7 and 14 following operation, eight rats were sacrificed per group with an overdose of pentobarbital sodium, and their left kidneys were subsequently harvested.

Histological analysis

Sections of left kidney tissue were stained with haematoxylin and eosin (H&E) for subsequent imaging using a light microscope (Olympus, Tokyo, Japan). Images were used to evaluate the severity of renal interstitial injury according to the following three parameters: tubule proteinaceous casts and dilation, interstitial inflammation, and interstitial fibrosis. Each parameter was assigned a score from 0 to 3 according to severity (0 = none, 1 = mild, 2 = moderate, 3 = severe), and these scores were added together to yield an overall tubulointerstitial score between 0 and 9. To determine the degree of collagen accumulation, kidney sections were stained with Masson’s trichrome (Zhongshan Biochemical, Beijing, China) and quantitatively measured using NIS-Elements BR 2.10 software (Nikon, Tokyo, Japan). Ten independent images (400× magnification) were randomly selected from each sample. The ratio of the interstitial collagen deposit area (colored in blue) to the total renal interstitial area was determined, and the mean values of these estimates were then used in subsequent analyses.

Immunohistochemical analysis

The following primary antibodies were utilized throughout these studies: rabbit anti-rats PAX2 monoclonal antibody (dilution 1:100, Zymed Laboratories, San Francisco, CA, USA); mouse anti-rat E-cadherin (dilution 1:100, Santa Cruz, CA, USA) and α-SMA monoclonal antibody (dilu-
Pax2 is upregulated in obstructive nephropathy

Immunohistochemical staining was performed according to the manufacturer’s instructions (Zhongshan Golden Bridge Biotechnology, Beijing, China). Briefly, following antigen retrieval, the sections were incubated with PAX2 and either E-cadherin or α-SMA primary antibodies at 4°C overnight. Then the sections were incubated with both biotinylated goat anti-rabbit secondary antibody and alkaline phosphatase (AP)-conjugated goat anti-mouse secondary antibody (1:1 volume) for 30 min. The reaction was then visualized using 3, 3’-Diaminobenzidine (DAB) and AP red. The sections were rinsed with water and counterstained with Mayer’s hematoxylin.

Western blotting

Samples of renal cortex isolated from rats (100 mg per sample) were lysed, and total protein was quantified using the bicinchoninic acid (BCA) method. Protein samples (50 g) were loaded onto a polyacrylamide gel and subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Proteins were then electroblotted onto a polyvinylidene difluoride (PVDF) membrane. The membrane was blocked with 5% fat-free milk at 4°C overnight, followed by incubation with PAX2, α-SMA, E-cadherin and β-actin (control) primary antibodies (all diluted at 1:1000) at 37°C for 2 h. Membranes were then washed three times and incubated at room temperature for 1 h with horseradish peroxidase-conjugated secondary antibodies (1:500 dilution, Santa Cruz, CA, USA). The density of the corresponding bands was measured using image analysis software (Quantity One-4.4.0, Bio-Rad Laboratories, Hercules, CA, USA) and corrected according to the value of the β-actin control.

Real-time polymerase chain reaction (PCR)

Total RNA (500 ng) was extracted, and was reverse-transcribed into complementary DNA (cDNA) using the PrimeScript™ RT Reagent KIT (Takara, Otsu, Shiga, Japan). The primer sequences that were used for RT-PCR analyses are shown in Table 1. Real-Time PCR was performed using the ABI 7500 real-time PCR system (Applied Biosystems, Foster City, CA, USA). Thermal cycling conditions included: 40 cycles of 95°C for 10 sec, 95°C for 5 sec and 60°C for 34 sec. Melt Curve: 95°C for 15 sec,
Pax2 is upregulated in obstructive nephropathy

6743

60°C for 1 min, and 95°C for 15 sec. A standard curve was generated by using serial dilutions of an established template. The relative mRNA concentration in each sample was calculated using the 2ΔΔCT method.

Statistical analysis

Statistical analyses were performed using the SPSS software package (version 17.0; SPSS Inc, USA). Data were analyzed using t tests and one-way analyses of variance (ANOVA) to evaluate inter-group and intra-group differences, respectively. Correlations between data were analyzed using the Pearson test. P < 0.05 was used as the threshold for determining statistical significance.

Results

Histologically abnormalities in UUO-treated kidneys

The kidneys of rats in the control group showed a normal shape with a notably smooth surface. This was in stark contrast to the appearance of kidneys from the UUO-treated rats, which were dilated and showed dramatic thinning of the renal parenchyma and hydronephrosis.

In the H&E-stained sections, the sham group exhibited normal tubules with proper morphology and organization (Figure 1A). However, at day 3 following the operation, the UUO group showed signatures of tubular dilation in addition to tubulointerstitial lymphocyte and monocyte infiltration. At day 14, UUO group tubule structures were severely damaged, showing signs of tubular atrophy, collapse of tubular lumen, massive necrosis of epithelial cells, infiltration of macrophages and lymphocytes, fibroblast proliferation and excessive collagen deposit. The UUO group had a significantly higher histological injury score compared with the control sham group (P < 0.05 at each time point after UUO, Table 2).

In the sham group, Masson trichrome staining was primarily localized to the basement membrane, mesangial areas and surrounding capillaries, but rarely visible in the interstitium surrounding the tubules (Figure 1B). We found that interstitial collagen accumulation in the rat kidney tissue significantly increased following UUO, which persisted with prolonged obstruction. UUO also caused a dramatic widening of the renal interstitium as well as an increase in stromal cell number and ECM components. The UUO group also had a significantly larger area of renal interstitial collagen deposition when compared with the sham group (P < 0.05 at each time point after UUO, Table 3).

mRNA levels of PAX2, α-SMA and E-cadherin

As shown in Figure 2, PAX2 mRNA expression was up-regulated at day 3 following UUO when compared with the sham group (P < 0.05). Notably, this increase in mRNA expression became more pronounced with extended obstruction time (P < 0.05, at each time point). Furthermore, a similar increase in α-SMA mRNA expression was also detected. Conversely, whereas E-cadherin was highly expressed in the renal cortex of rats in the sham group, its expression was remarkably downregulated following UUO treatment (P < 0.05 at all time points).

Protein levels of PAX2, α-SMA and E-cadherin

Upon ligation of the left ureter at day 3, PAX2 protein levels rose rapidly in the affected kidney. By 14 days following UUO, renal PAX2 expression was significantly elevated compar-
Pax2 is upregulated in obstructive nephropathy

Figure 2. The mRNA expression of PAX2, E-cadherin and α-SMA detected by real time-PCR. Amplification curves of PAX2 (A1), E-cadherin (A2), α-SMA (A3) and GAPDH (A4). Melting curves of PAX2 (B1, 87 °C), E-cadherin (B2, 83.5 °C), α-SMA (B3, 83.5 °C) and GAPDH (B4, 84 °C). Quantification of the mRNA levels of PAX2 (C), E-cadherin (D) and α-SMA (E), and corrected by reference to the value of GAPDH. *P < 0.05 compared to the sham group; †P < 0.05, intra-group comparison (vs. all other time points) in the UUO group.
Pax2 is upregulated in obstructive nephropathy

Western blotting also revealed increased co-expression between PAX2 and E-cadherin, or PAX2 and α-SMA in control tissue. Figure 3. The expression of PAX2, E-cadherin and α-SMA proteins in kidney tissue from the two groups. (A) The levels of PAX2, E-cadherin and α-SMA proteins were determined by Western blotting analysis. Quantification of the protein levels of PAX2 (B), E-cadherin (C) and α-SMA (D), and corrected by reference to the value of β-actin. "P < 0.05 compared to the sham group; "P < 0.05, intra-group comparison (vs. all other time points) in the UUO group.

In order to determine the relationship between PAX2 and either α-SMA or E-cadherin, double staining of these protein combinations was performed. The nuclei of PAX2 immuno-positive cells were stained brown, and cytoplasmic- or membrane-positive staining for E-cadherin or α-SMA, respectively, is stained in red. The co-expression of PAX2/E-cadherin or PAX2/α-SMA is indicated with arrows. Magnification, 200×. PAX2/E-cadherin-positive cells were identified in rats from the sham group (A1), UUO group at day 3 (A2), and UUO group at day 14 (A3). PAX2/α-SMA-positive cells were identified in rats from the sham group (B1), UUO group at day 3 (B2), and UUO group at day 14 (B3).
Pax2 is upregulated in obstructive nephropathy

Three days after the UUO operation, positive staining for PAX2 was detected in the tubular epithelia, while E-cadherin staining was notably decreased. The continuous enhancement of PAX2 expression and simultaneous decrease in E-cadherin expression were observed until day 14. Similar to PAX2, α-SMA expression was significantly enhanced in tubular epithelia and the interstitial area at day 3 following UUO, and its expression consistently increased with prolonged obstruction (Figure 4). To determine the significance of this observed correlation, we evaluated the association of PAX2 levels with α-SMA or E-cadherin levels using the Pearson correlation test. These analyses revealed that PAX2 protein expression in renal tubules was positively-associated with α-SMA protein levels \((r = 0.977, P < 0.05)\), and negatively-associated with E-cadherin protein levels \((r = -0.984, P < 0.05)\); Figure 5).

Discussion

Epithelial cell-cell junctions are important for maintaining both cell polarity and tissue integrity. E-cadherin is encoded by the tumor suppressor gene CDH1, and is a homophilic adhesion molecule that localizes to epithelial adherens junctions [12]. In addition, E-cadherin is known to play a key role in maintaining mature epithelial cells in a differentiated state [13]. It was previously reported that E-cadherin suppresses EMT by down-regulating lymphocyte enhancer factor-1 (LEF-1), which prevents β-catenin nuclear localization. This in turn inhibits Wnt/β-catenin pathway activation that is typically associated with promoting EMT [14, 15]. Therefore, down-regulation of E-cadherin is considered to be one of the key events that driving early EMT initiation. In this study, we revealed that E-cadherin was highly expressed in the renal cortex of control rats. Remarkably, UUO led to a rapid down-regulation in E-cadherin mRNA and protein expression, suggesting that renal epithelial cells ultimately lose their epithelial characteristics following UUO.

RIF is characterized by the accumulation of ECM components and the loss of proper tubular architecture. Excessive production and deposition of interstitial ECM has been attributed to the hyperproliferation of myofibroblasts that results from de novo activation of α-SMA. α-SMA is an actin isoform that predominates in vascular and visceral smooth muscle [16]. α-SMA-positive fibroblasts and myofibroblasts have been found in both acute and chronic renal injury [17]. In obstructive nephropathy, activated myofibroblasts stop proliferating and instead produce large amounts of ECM, ultimately resulting in interstitial fibrosis. In this study, α-SMA expression increased rapidly and persistently in obstructed kidneys following UUO, and these changes were consistent with the dramatic ECM accumulation observed. Taken together, the simultaneous decrease in E-cadherin and increase in α-SMA expression observed in these studies further reinforces the conclusion that UUO in renal tissue promotes EMT. The PAX2 genes encode a family of developmentally-controlled proteins that have fundamental roles in kidney development [18]. During embryonic kidney development, PAX2 helps to initiate a genetic cascade, which controls a complex series of events that ultimately
Pax2 is upregulated in obstructive nephropathy

leads to a mesenchymal-to-epithelial conversion [19]. When nephrogenesis is complete, Pax2 is down-regulated and thereafter sustained at very low levels in mature kidneys [20, 21]. In addition, Pax2 was reported to have an anti-apoptotic function, and is likely to be reactivated after renal injury to limit apoptotic damage [22-24]. Following acute tubular necrosis, transient expression of Pax2 was detected in proximal tubular epithelial cells during the process of regeneration [24]. Cohen et al. reported that reactivation of Pax2 protects renal collecting duct cells against apoptosis that would typically be induced by obstructive injury [22]. Our previous studies demonstrated that re-expression of Pax2 in a UUO rat model occurs primarily in the renal tubular epithelial cells. Additionally, we showed that Pax2 protein levels positively correlated with both the severity of renal tubular damage and the levels of renal interstitial fibrosis, thus indicating that Pax2 might participate in RIF pathogenesis [25, 26]. To date, however, there has been little evidence of Pax2's direct involvement in renal tubular EMT. In this study, double staining of Pax2/α-SMA and Pax2/E-cadherin was performed to determine whether there was a notable relationship between their expression profiles. In the sham group, tubular epithelia were mostly Pax2- and α-SMA negative, but showed dramatic E-cadherin staining. Interestingly, Pax2 and α-SMA expression gradually increased following UUO and the positively-stained Pax2/α-SMA areas were significantly enhanced by day 14. Contrastingly, E-cadherin expression decreased over the time following obstruction. Pearson correlation analyses further revealed that Pax2 protein levels in renal tubules were positively associated with α-SMA (r = 0.977, P < 0.05), but not E-cadherin protein levels (r = -0.984, P < 0.05). These findings suggest that Pax2 re-expression is accompanied by the down-regulation of the epithelial marker E-cadherin and up-regulation of the mesenchymal marker α-SMA. Therefore, Pax2 is likely involved in the process of EMT during renal fibrosis. Furthermore, EMT is generally considered as a reverse process of MET, which occurs during the embryonic development of the mammalian kidney [27]. Given the powerful anti-apoptotic role of Pax2, we hypothesize that Pax2 is re-activated during the early stages of obstructive nephropathy due to a compensatory mechanism. Following obstruction, over-expression of Pax2 not only activates renal tubular epithelial cell transdifferentiation, but also promotes EMT by stimulating complex signaling pathways [9, 28]. Thus, re-expression of Pax2 initially serves as a protective response against renal damage, but ultimately leads to EMT and renal interstitial fibrosis. The molecular mechanism by which Pax2 induces EMT is still unknown and will require further investigation.

Conclusions

In conclusion, the embryonic developmental gene Pax2 is re-expressed in the renal tubular epithelial cells following obstructive nephropathy. Pax2 re-expression is accompanied by up-regulation of the mesenchymal marker α-SMA and down-regulation of the epithelial marker E-cadherin. Therefore, Pax2 likely participates in EMT during the process of renal interstitial fibrosis. Gaining additional insight into Pax2's role in driving EMT would provide ideas for therapeutic approaches to retarding the pathological progression of obstructive nephropathy.

Acknowledgements

Thanks to Professor Yubin Wu at the China Medical University for his assistance with this study. This work was supported by funding from the Youth Science Foundation Projects of Heilongjiang Province (No. QC2012C119), the Key Science and Technology Project of Jiamusi University (No. Sz2014-011), the National Cultivating Project of Jiamusi University (No. JMSUJCGP2016-005) and the Youth academic backbone support project of Heilongjiang Province (No. 1253G057).

Disclosure of conflict of interest

None.

Address correspondence to: Chang-Shan Wang, College of Basic Medicine, Jiamusi University, No. 148 Xuefu St, Jiamusi 154007, Heilongjiang, China. Tel: +8613945470064; Fax: +8613945470064; E-mail: wcs0451@163.com

References

Zhou TB, Qin YH, Zhou C, Lei FY, Zhao YJ, Chen J, Su LN and Huang WF. Less expression of prohibitin is associated with increased caspase-3 expression and cell apoptosis in renal interstitial fibrosis rats. Nephrology (Carlton) 2012; 17: 189-196.

Zhou TB, Qin YH, Zhou C, Lei FY, Zhao YJ, Chen J, Su LN and Huang WF. Less expression of prohibitin is associated with increased caspase-3 expression and cell apoptosis in renal interstitial fibrosis rats. Nephrology (Carlton) 2012; 17: 189-196.