Original Article

C-reactive protein to albumin ratio as prognostic markers in patients with advanced non-small cell lung cancers treated with tyrosine kinase inhibitors

Yi Lei1, Jia Wu1, Wang Guo1, Yi He1, Tingting Hu1, Weimin Li2

1Department of General Medicine/Gold Card International Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; 2Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China

Received September 13, 2017; Accepted February 14, 2018; Epub April 15, 2018; Published April 30, 2018

Abstract: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have demonstrated a dramatic response rate and prolonged progression free survival (PFS) in patients harboring an activating EGFR mutation, but reliable prognostic markers are lacking. High C-reactive protein to albumin ratio (CAR) is a marker of host systemic inflammation and associated with poor outcome in various carcinomas, but has not been analyzed in advanced NSCLC patients treated with EGFR-TKI. We retrospectively analyzed 392 advanced NSCLC patients with activating EGFR mutations to examine the predictive value of CAR in the era of targeted therapy. The optimal cutoff level of CAR was set at 0.146 according to the receive operating characteristic (ROC) analysis. Survival analysis was determined using the Kaplan-Meier analysis and prognostic factors were determined using a Cox proportional hazards model. We found that high CAR (≥0.146) was associated with poorer PFS and lower objective response rate. Subgroup analysis of both gefitinib and erlotinib showed that CAR was significantly associated with PFS. Multivariate analysis showed that pretreatment CAR was an independent predictive marker for PFS (HR: 1.48, 95% CI: 0.96-1.33). The findings of the present study demonstrated that advanced NSCLC patients with activating EGFR mutations who have pretreatment CAR values higher than 0.146 should be considered to have a high risk of early EGFR-TKI treatment failure.

Keywords: C-reactive protein, albumin, non-small-cell lung carcinoma, epidermal growth factor receptor, tyrosine kinase inhibitors, progression-free survival

Introduction

Lung cancer remains one of the leading causes of cancer-related death worldwide [1]. In particular, advanced non-small-cell lung cancer (NSCLC) continues to be a challenging disease with poor outcomes [2]. Recently, the identification of activating mutations in epidermal growth factor receptor (EGFR), mostly seen in exon 19 (deletion) or in exon 21 (L858R point mutation), together with an increased sensitivity to EGFR tyrosine kinase inhibitors (TKI), has been the first and most important step toward molecular-guided precision therapy of lung cancer [3]. Multiple randomized controlled trials have demonstrated improvement in progression-free survival (PFS) when comparing EGFR-TKI against chemotherapy in this genetically distinct subset of NSCLC [4-7]. After the start of the treatment, the presence in the tumor of a mutation of the EGFR gene is a strong predictor of response to EGFR TKI therapy [8]. Unfortunately, some patients with activating EGFR mutations still respond poorly to EGFR-TKI therapy, and early identification of them is difficult because the mechanism of resistance remains unclear. The most frequently reported mechanism of acquired resistance is the EGFR T790M point mutation within exon 20 [9, 10] and such patients are suitable candidates for second or third-generation EGFR-TKI [11]. Small cell histologic transformation has also been implicated in the development of acquired resistance [12]. Once resistance occurs, either conventional cytotoxic chemotherapy or other small molecular inhibitors should be considered [13]. To this
The predictive value of CAR in NSCLC

Figure 1. Flow diagram of the phases of the study.

Figure 2. Cutoff value of C-reactive protein to albumin ratio (CAR) assessed by ROC curve. The sensitivity and specificity was 56.32 and 65.66, respectively.

end, it is essential to predict the failure before treatment and plan for timely alternative therapies.

Recently, inflammation-based scoring systems, such as Glasgow prognostic score and neutrophil to lymphocyte ratio, have been treated as useful prognostic predictors for cancer specific survival [14, 15]. In addition, C-reactive protein to albumin ratio (CAR), is considered as an indicator of systemic inflammatory response, has been reported to predict prognosis in gastric cancer [16], pancreatic cancer [17], colorectal cancer [18], esophageal cancer [19], and lung cancer [20]. Nevertheless, the prognostic value of the CAR in NSCLC patients with EGFR-TKI treatment has not been reported. Therefore, this study aims to investigate the predictive significance of CAR for PFS, so that to develop a strategy for risk stratification of initial EGFR-TKI treatment in NSCLC patients with EGFR mutations.

Materials and methods

 Patients

We retrospectively analyzed clinical data of 1345 consecutive patients with cytologically or histologically confirmed locally advanced (IIIIB) or metastatic-stage (IV) disease, who were treated with EGFR TKI treatment including gefitinib and erlotinib in West China Hospital, from January 2008 to December 2016. Among these, 403 subjects were confirmed with activating EGFR mutations, either an exon 19 microdeletion or exon 21 point mutation. Patients who had a concomitant infection including human immunodeficiency virus or hepatitis, concomitant radiotherapy or simultaneously treated with any other agents, such as cytotoxic agents or investigational drugs were excluded. Finally, after excluding another 11 patients without pretreatment laboratory results, a total of 392 patients were enrolled into the study (Figure 1). The study was conducted according to the declaration of Helsinki and was approved by the Research Ethics Committee of the West China Hospital.

 Data extraction

Baseline characteristic of each subject, including age, gender, smoking status, tumor pathology, treatment history, Eastern Cooperative Oncology Group (ECOG) performance scores
Table 1. Baseline characteristics of the study subjects, divided into two groups according to the value of C-reactive protein to albumin ratio (CAR)

<table>
<thead>
<tr>
<th>Clinical Characteristics</th>
<th>Total (n=392)</th>
<th>CAR<0.146 (n=209)</th>
<th>CAR≥0.146 (n=183)</th>
<th>(P) value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td>0.037</td>
</tr>
<tr>
<td><60</td>
<td>175</td>
<td>104</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>≥60</td>
<td>227</td>
<td>105</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td>0.156</td>
</tr>
<tr>
<td>Male</td>
<td>155</td>
<td>90</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>237</td>
<td>119</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td>Yes</td>
<td>269</td>
<td>160</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>123</td>
<td>49</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Pathology</td>
<td></td>
<td></td>
<td></td>
<td>0.402</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>258</td>
<td>141</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>118</td>
<td>62</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>16</td>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Pathological TNM stage</td>
<td></td>
<td></td>
<td></td>
<td>0.022</td>
</tr>
<tr>
<td>III</td>
<td>113</td>
<td>71</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>279</td>
<td>138</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>EGFR MT</td>
<td></td>
<td></td>
<td></td>
<td>0.082</td>
</tr>
<tr>
<td>Exon 19</td>
<td>227</td>
<td>130</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>Exon 21</td>
<td>165</td>
<td>79</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>TKI type</td>
<td></td>
<td></td>
<td></td>
<td>0.779</td>
</tr>
<tr>
<td>Gefitinib</td>
<td>344</td>
<td>182</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>Erlotinib</td>
<td>48</td>
<td>27</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>TKI as</td>
<td></td>
<td></td>
<td></td>
<td>0.127</td>
</tr>
<tr>
<td>1st line</td>
<td>231</td>
<td>132</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>2nd line</td>
<td>147</td>
<td>72</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>≥3rd line</td>
<td>14</td>
<td>5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>ECOG PS</td>
<td></td>
<td></td>
<td></td>
<td>0.004</td>
</tr>
<tr>
<td>0-1</td>
<td>320</td>
<td>182</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>2-4</td>
<td>63</td>
<td>27</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>CEA (ng/ml)</td>
<td></td>
<td></td>
<td></td>
<td>0.262</td>
</tr>
<tr>
<td><5</td>
<td>154</td>
<td>88</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>≥5</td>
<td>238</td>
<td>121</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>Hemoglobin (g/L)</td>
<td></td>
<td></td>
<td></td>
<td>0.305</td>
</tr>
<tr>
<td><120</td>
<td>194</td>
<td>109</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>≥120</td>
<td>198</td>
<td>100</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Calcium (mmol/L)</td>
<td></td>
<td></td>
<td></td>
<td>0.148</td>
</tr>
<tr>
<td><2.5</td>
<td>129</td>
<td>76</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>≥2.5</td>
<td>263</td>
<td>133</td>
<td>130</td>
<td></td>
</tr>
</tbody>
</table>

Note: CAR=C-reactive protein to albumin ratio; EGFR MT=epidermal growth factor receptor mutation; ECOG PS=The Eastern Cooperative Oncology Group performance scores; CEA=carcinoembryonic antigen. *Chi-squared test by 2-sided Pearson exact test.

The score closest to the point with both maximum sensitivity (56.3%) and specific-
The predictive value of CAR in NSCLC

The predictive value of CAR in NSCLC

3399

ity (65.7%) was selected as the cut-off value of CAR (0.146). The groups were compared using
the chi-square analysis. Statistical significance
of the differences in Kaplan-Meier estimates
was assessed using the log-rank test. Cox propor-
tional hazards model was used to evaluate
the effect of all potential prognostic factors on
the survival measures. A P-value of <0.05 was
considered statistically significant.

Results

Patient characteristics

The baseline characteristics of the 392 patients
enrolled in the study are listed in Table 1. All
patients were divided into groups according to
the value of pretreatment CAR and 209 patients
owned lower CAR values (<0.146), while the
remaining had higher CAR values (≥0.146) in
our cohort. As shown that, an elevated CAR was
significantly associated with age (P=0.037) and
smoking history (P=0.001). In addition, Patients
with high CAR had advanced TNM stage
(P=0.022), and higher ECOG PS (P=0.004), as
compared to those with low CAR values.
However, there were no significant differences
between the two CAR groups in terms of sex,
clinical pathology, EGFR MT, TKI type, the levels
of CEA, hemoglobin, or calcium. Subsequently,
the distribution of CAR values during EGFR
TKI treatment were compared. As illustrated in
Figure 3, the median CAR value was 0.180
(range 0.004-7.462) before treatment. The
median CAR value was 0.260 (range 0.005-
8.262) at 1 month and 0.339 (range 0.026-
8.947) at 3 months, respectively, showing sig-
nificant increasing trend when compared to
pretreatment values.

Predictive value of CAR for PFS

To reveal the prognostic significance of CAR in
subjects with the treatment of EGFR TKI, the
relationship between CAR and PFS is present-
ed as Kaplan-Meier curves in Figure 4. The
median PFS was 15.45 months (95% CI: 11.62-
17.07) for patients with pretreatment CAR<
0.146 and 10.38 months (95% CI: 6.18-12.45)
for CAR≥0.146 (Figure 4A). We also conducted
analyses using CAR values at 1 or 3 months for
patients with PFS longer than 1 or 3 months.
Patients with CAR<0.146 and those with
CAR≥0.146 had PFS of 14.36 months (95% CI:
10.39-15.69) and 10.61 months (95% CI: 8.53-
12.04), respectively, when analyzing CAR val-
ues at 1 month after the treatment (Figure 4B).
while using the CAR values at 3 months for
analysis, the median PFS was 15.65 months
(95% CI: 10.97-21.53) and 13.53 months (95%
CI: 11.50-15.64) for CAR<0.146 group and
CAR≥0.146 group, respectively. In addition, the
results of subgroup analyses according to TKI
type showed that in subjects received gefitinib
treatment, those who had high CAR had lower
PFS than patients with low CAR (14.67 vs 13.15
months, P=0.002; Figure 5A). Similar trend
was observed in subjects with erlotinib treat-
ment (13.36 vs 7.18 months, P=0.024; Figure
5B).

In univariate analysis, PFS was found signifi-
cantly associated with variables of age (HR:
0.99, 95% CI: 0.96-1.00, P<0.001), TNM stage
(HR:2.16, 95% CI: 0.61-5.58, P<0.001), ECOG
PS (HR: 2.07, 95% CI: 0.11-0.35, P<0.001), cal-
cium (HR: 0.88, 95% CI: 0.50-0.96, P=0.035),
CAR at baseline (HR: 1.95, 95% CI: 1.05-2.50,
P<0.001) and at 1 month (HR: 1.54, 95% CI:
0.99-1.90, P<0.001). However, CAR at 3 mon-
th was not correlated with PFS in patients
receiving EGFR TKI treatment (P=0.102). After
adjusting confounders, multivariate analysis
showed the similar results with those of univari-
ate analysis. CAR at baseline 1.48 (0.96-1.33)
and 1 months 1.21 (1.03-1.59) were indepen-
The predictive value of CAR in NSCLC

Figure 4. Kaplan-Meier curve of progression free survival: (A) Plotted by binary distribution using cutoff CAR value of 0.146 at Pretreatment; (B) Plotted by binary distribution using cutoff CAR value of 0.146 at 1 month; (C) Plotted by binary distribution using cutoff CAR value of 0.146 at 3 months.

Figure 5. Differences in the prognostic significance of CAR according to TKI type. A. Comparison of PFS on patients who received gefitinib treatment with high CAR vs low CAR; B. Comparison of PFS on patients who received erlotinib treatment with high CAR vs low CAR.

Table 2. Effects of various variables on progression free survival in univariate and multivariate analyses

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariable</th>
<th>Multivariable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR (95% CI)</td>
<td>P-value</td>
</tr>
<tr>
<td>Age</td>
<td>0.99 (0.96-1.00)</td>
<td><0.001</td>
</tr>
<tr>
<td>Gender</td>
<td>1.06 (0.65-4.67)</td>
<td>0.253</td>
</tr>
<tr>
<td>Smoking</td>
<td>1.02 (0.74-2.33)</td>
<td>0.350</td>
</tr>
<tr>
<td>TNM stage</td>
<td>2.16 (0.61-5.58)</td>
<td><0.001</td>
</tr>
<tr>
<td>TKI type</td>
<td>0.84 (0.59-0.98)</td>
<td>0.452</td>
</tr>
<tr>
<td>ECOG PS</td>
<td>2.07 (0.11-0.35)</td>
<td><0.001</td>
</tr>
<tr>
<td>CEA (ng/ml)</td>
<td>1.18 (0.99-4.58)</td>
<td>0.294</td>
</tr>
<tr>
<td>Hemoglobin (g/L)</td>
<td>0.71 (0.19-0.82)</td>
<td>0.412</td>
</tr>
<tr>
<td>Calcium (mmol/L)</td>
<td>0.88 (0.50-0.96)</td>
<td>0.035</td>
</tr>
<tr>
<td>CAR at baseline</td>
<td>1.95 (1.05-2.50)</td>
<td><0.001</td>
</tr>
<tr>
<td>CAR at 1 month</td>
<td>1.54 (0.99-1.90)</td>
<td><0.001</td>
</tr>
<tr>
<td>CAR at 3 months</td>
<td>1.13 (0.90-7.86)</td>
<td>0.102</td>
</tr>
</tbody>
</table>

Note: HR=hazard ratio; aHR=adjust hazard ratio; ECOG PS=The Eastern Cooperative Oncology Group performance scores; CEA=carcinoembryonic antigen; CAR=C-reactive protein to albumin ratio.
The predictive value of CAR in NSCLC

The tumor response data were collected among 176 patients. The percentage of partial response patients were lower in the CAR≥0.146 group compared with those in the CAR<0.146 group (52.1% vs 68.3%). The objective response rate was 52.1% and 72.0%, respectively in the CAR≥0.146 group and CAR<0.146 group (Table 4).

Table 4. Tumor responses according to the pretreatment value of C-reactive protein to albumin ratio (CAR)

<table>
<thead>
<tr>
<th>Response</th>
<th>Total (n=176)</th>
<th>CAR<0.146 (n=82)</th>
<th>CAR≥0.146 (n=94)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete response</td>
<td>3 (1.7%)</td>
<td>3 (3.7%)</td>
<td>0 (0%)</td>
<td>0.016</td>
</tr>
<tr>
<td>Partial response</td>
<td>105 (59.7%)</td>
<td>56 (68.3%)</td>
<td>49 (52.1%)</td>
<td></td>
</tr>
<tr>
<td>Stable disease</td>
<td>46 (26.1%)</td>
<td>17 (20.7%)</td>
<td>29 (30.9%)</td>
<td></td>
</tr>
<tr>
<td>Progressive disease</td>
<td>22 (12.5%)</td>
<td>6 (7.3%)</td>
<td>16 (17.0%)</td>
<td></td>
</tr>
<tr>
<td>Objective response rate</td>
<td>108 (61.4%)</td>
<td>59 (72.0%)</td>
<td>49 (52.1%)</td>
<td></td>
</tr>
</tbody>
</table>

Note: Tumor response means Objective response rate included complete response and partial response. P value was obtained using Chi-squared test by 2-sided Fisher exact test.

Tumor response according to CAR

The tumor response data were collected among 176 patients. The percentage of partial response patients were lower in the CAR≥0.146 group compared with those in the CAR<0.146 group (52.1% vs 68.3%). The objective response rate was 52.1% and 72.0%, respectively in the CAR≥0.146 group and CAR<0.146 group (Table 4).

Discussion

To the best of our knowledge, this was the first study to identify the prognostic value of CAR on PFS in advanced NSCLC with activating mutations of the EGFR genes. CAR is a simple index that calculated by routine biochemical examinations. High CAR was reported to be correlated with poor outcomes in patients with acute medical admissions and sepsis [26, 27]. The presence of systemic inflammation, as indicated by a high CRP level and a low albumin level, has been repeatedly demonstrated to play an important role in cancer initiation, progression and prognosis [20, 21, 28]. However, the link between CAR and PFS in NSCLC patients with EGFR-TKI treatment is still undefined and its role as a predictive marker in this area needs to be elucidated.

In our single-center retrospective study of 392 patients with activating EGFR mutations, advanced stage III and IV NSCLC who underwent EGFR-TKI therapy, we evaluated whether CAR could predict which patients would have a response to target therapy and thus longer PFS. We showed that high CAR is associated with initial resistance to EGFR-TKI therapy and it is reasonable to conclude that high CAR may reflect the immune responses and systemic inflammation that could alter the treatment response in patients with cancer [29]. Systemic inflammation consists of circulating cytokines, small inflammatory proteins, circulating immune cells, and acute-phase proteins, which produce the clinical symptoms that frequently mark the presence and progression of cancer [30]. Both C-reactive protein (CRP) and albumin are synthesized in the liver and secreted into the circulation. Together with the enzyme lactate dehydrogenase, they are accepted markers of systemic inflammation [31]. So far, limited data are available in literatures regarding the effects of systemic pretreatment inflammation on the prognosis of NSCLC patients. Studies have suggested that the values of preoperative CRP hold important prognostic information on short or long-term mortality in operable lung cancer [32, 33]. Similar prognostic value of CRP was then observed in advanced NSCLC patients receiving palliative chemotherapy, and provide additional information to...
established prognostic factors such as stage of disease and performance status [34-36]. A recent study identified its role in patients treated with erlotinib and found serum high level of CRP was independently associated with PFS and also with OS [37]. On the other hand, the study by Miura et al revealed that low preoperative serum albumin level was useful indicator of poor outcome in NSCLC patients with surgical resection [38]. Low albumin in cancer patients has always considered as a reflection of malnutrition, which could impair anatomic barriers, immunity, and other defense mechanisms [39]. Base on above analysis, we hypothesized that CAR, could both reflect body systemic inflammation and immune status, was sufficient to predictive outcome of EGFR-TKI therapy in advanced NSCLC patients. Up to now, although numerous studies have determined the role of pretreatment CAR in predicting prognosis in different cancers including NSCLC [40], we firstly showed that pretreatment CAR was predictive of the duration of response to EGFR TKI. Subgroup analysis also validated the predictive ability of CAR in NSCLC patients treated with gefitinib or erlotinib. This was supported by the findings that gefitinib and erlotinib, both as first-generation EGFR-TKIs, have equivalent therapeutic efficacy in NSCLC patients harboring EGFR mutation [41]. However, the predictive property was gradually decreased when using CAR at 1 month after therapy and even disappeared when using CAR at 3 months. Above results suggested that the mechanism of the high CAR during target therapy should be affected by various ways, which should be further explored.

There were several limitations in this study. Firstly, it was a retrospective study from a single institution with relative small sample size. Although no missing data concerning laboratory results and survival data were observed, the selective or information bias of the study cannot be avoided. Prospective studies with large samples are needed to confirm our conclusions before its usage in the clinical settings. Moreover, there was no consistent cutoff value for CAR so far, the cut-off value of CAR in this study is likely biased due to its calculation by ROC analysis. However, the value was similar with other published studies [25, 42, 43] and more studies were needed to set a uniform cutoff value. Collectively, our findings demonstrated that high pretreatment CAR might be an unfavorable prognostic factor for NSCLC patients with EGFR mutations and those have high pretreatment CAR (≥0.146) are more likely to have a low response rate to EGFR-TKIs.

Acknowledgements

This study was supported by the national science foundation of China (87394733).

Disclosure of conflict of interest

None.

Address correspondence to: Weimin Li, Department of Respiratory Medicine, West China Hospital, Sichuan University, 37 GuoXue Xiang, Chengdu City 610041, Sichuan Province, China. Tel: +86 13668230085; E-mail: minminli_0917@163.com

References

[6] Sequist LV, Yang JC, Yamamoto N, O’Byrne K, Hirsh V, Mok T, Geater SL, Orlova S, Tsai CM,
The predictive value of CAR in NSCLC

The predictive value of CAR in NSCLC

