Expression level of miR-146b-5p via miRNA sequencing and its potential targets in papillary thyroid cancer

Lin Shi1,2*, Peng Lin3*, Dongyue Wen3, Li Gao1, Liang Liang4, Yihuan Luo4, Yichen Wei1, Yu He3, Hong Yang3, Wei Ma1

Departments of 1Pathology, 3Medical Ultrasonography, 4Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China; 2Department of Pathology, The First Affiliated Hospital of Guangxi University of Science and Technology, Liu Zhou, People’s Republic of China. * Equal contributors.

Received September 5, 2017; Accepted January 4, 2018; Epub March 15, 2018; Published March 30, 2018

Abstract: Background and objective: MiR-146b-5p is one of the deregulated miRNAs in papillary thyroid carcinoma (PTC) that promotes the malignant potential of cancer cells. To interpret the clinical significance and underlying molecular mechanism of miR-146b-5p in PTC, a comprehensive analysis combining The Cancer Genome Atlas (TCGA) data and in silico investigation was conducted. Methods: Expression and clinical data for PTC were obtained from TCGA, and the relationships between miR-146b and clinicopathological parameters as well as the prognosis were later analyzed. Putative target genes of miR-146-5p were acquired by intersecting the differentially expressed genes of GSE76050 with genes predicted by twelve online software programs. Subsequently, Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and PPI network analyses were performed using the chosen target genes to analyze the probable molecular mechanisms of PTC. Finally, several hub genes were validated via GEPIA and The Human Protein Atlas. Results: MiR-146b was strongly overexpressed in PTC tissues as evidenced by TCGA data. MiR-146b levels were also significantly associated with the progression of PTC. In total, 6273 and 4228 genes were identified as potential targets from GSE chip data and online prediction, respectively. Ultimately, 994 genes were chosen as the most probable targets from the intersection of the two gene sets. According to the GO enrichment analysis, ‘intracellular signaling cascade’, ‘regulation of programmed cell death’, ‘positive regulation of cellular biosynthetic process’, ‘insoluble fraction’, ‘cell fraction’, ‘membrane fraction’, ‘transcription regulator activity’ and ‘transcription activator activity’ were the most significant GO terms for the target genes. In regard to KEGG analysis, the targets were significantly clustered into cancer, apoptosis, and calcium signaling pathways. Two prospective targets, TRAF1 and PML, were both down-regulated at the mRNA and protein level in PTC tissues. Conclusions: MiR-146b-5p may play an essential role in the progression of PTC and influence the biological processes of cancer cells by regulating downstream targets involved in multiple signaling pathways.

Keywords: Papillary thyroid carcinoma, miR-146b-5p, the Cancer Genome Atlas, hub genes

Introduction

Papillary thyroid carcinoma (PTC) is the predominant type of thyroid cancer (TC), constituting approximately 80% of all TCs [1, 2]. PTCs have been classified into several subtypes according to the histological and morphological characteristics, among which PTCs frequently present as multifocal intra-thyroid tumors (65% of all cases) [3, 4]. Despite the fact that current treatments for PTC, such as surgical resection and adjuvant radioactive iodine (RAI) therapy, can provide patients with good prognosis, tumor recurrence accompanied by lymph node metastasis still occurs in some patients [5, 6] and an increasing morbidity of PTC has been reported over the last 40 years [7, 8]. Therefore, better targets are needed to improve their survival.

The initiation and development of PTC is a complicated process involving multiple genes and signaling pathways [9-11]. Although great advancements have been made on the detection of aberrantly expressed and mutated genes including EphB4, EphrinB2, EGFR, p53,
miR-146b-5p in papillary thyroid cancer

BRAF, RAS, PTEN, and TP53 [12], the molecular pathogenesis of PTC is far from fully elucidated. Recent studies have revealed that abnormally expressed microRNAs (miRNAs) are actively involved in PTC [13, 14]. miRNAs are a class of endogenous non-coding RNAs that suppress the expression of downstream targets by binding to the 3’-untranslated regions of mRNAs [15, 16]. Abundant evidence has suggested that miRNAs play pivotal roles in various human cancers by affecting the growth, proliferation, differentiation, apoptosis, and metastasis of cancer cells [17, 18]. The deregulation of miRNAs has also been observed in PTC [13, 19-22]. Among the miRNAs studied to date, miR-146b-5p has been a research hot spot. Prior studies indicated that miR-146b-5p contributes to the metastasis, migration and invasion of cancer cells by interacting with different molecular targets in PTC [18, 23-29]. Nevertheless, the molecular mechanism of miR-146-5p in PTC remains unknown. Furthermore, no study has mined miRNA-seq data to explore the clinical role of miR-146b-5p. Thus, we carried out this study to investigate the clinical role of miR-146-5p in PTC by combining miRNA-seq data and bioinformatics methods to identify its target genes.

Material and methods

MiRNA-seq data mining based on TCGA

Since only the data for precursor miRNA was provided by the miRNA-seq from TCGA, the expression level of precursor miR-146b was downloaded and re-calculated (https://gdc-portal.nci.nih.gov/). Differences in miR-146b levels between PTC tissues and their non-cancerous counterparts, as well as between different groups based on clinical parameters were assessed with a Student’s t-test. The diagnostic value of miR-146b was examined by using the receiver operating characteristic (ROC). The prognostic value of miR-146b was evaluated by using Kaplan-Meier analysis. All statistical analysis was conducted with SPSS 22.0 and P<0.05 was considered significant.

Optimal candidate target genes of miR-146b-5p

Differentially expressed mRNAs targeted by miR-146b-5p were identified by GSE76050 from the Gene Expression Omnibus (GEO) data-set, an expression profiling array. For this analysis, a control sample of untreated BCPAP cells and a sample transfected with miR-146b-5p mimic in PTC cell lines were included in a two-condition experiment. The processed data (normalized by log10 ratio) were transformed into fold changes, and down-regulated mRNAs with changes of less than 0.5-fold were gathered. Additionally, to obtain the predicted target mRNAs of miR-146b-5p, twelve online prediction programs, including miRWalk, Microt4, miRanda, mirbridge, mirDB, miRMap, miRNA-Map, Pictar2, PITA, RNA22, RNAhybrid and Targetscan, were employed in this study. Genes that appeared in the results of at least four of the platforms were selected as potential targets of miR-146b-5p. Next, genes overlapping in the lists from both GSE microarray and prediction software were considered as optimal candidate targets of miR-146b-5p in PTC.

PPI network of target genes

To visualize the interactions between the target genes of miR-146b-5p, a Protein-Protein Interaction network was drawn using STRING (http://www.string-db.org/). Genes with the highest degree values were considered to be hub genes.

Functional annotation of miR-146b-5p target genes

To evaluate the function of the selected target genes, we carried out Gene Ontology (GO) enrichment analysis and KEGG pathway annotation in DAVID (http://david.abcc.ncifcrf.gov/). GO terms classified as biological process (BP), cellular component (CC), molecular function (MF) with a modified Fisher Exact P-value less than 0.01 and pathways with p-values less than 0.05 were considered to be significant. The GO enrichment analysis was visualized by Cytoscape v3.5.0. Protein-protein interaction (PPI) maps were also plotted to illustrate the network of target genes in the three most significant KEGG signaling.

Validation of the hub target genes of miR-146b-5p

To further verify that the predicted hub genes are real targets of miR-146b-5p in PTC, the mRNA level of the selected genes was shown by GEPIA using TCGA data for analysis.
miR-146b-5p in papillary thyroid cancer

Figure 1. miR-146a-5p expression in different organs and tumors. miR-146a-5p expression data was downloaded from Human MiRNA Expression Database (HMED) (http://bioinfo.life.hust.edu.cn/smallRNA/index.php).

Simultaneously, protein levels of the genes were displayed via The Human Protein Atlas.

Figure 2. miR-146a-5p expression in different organs. miR-146a-5p expression data were downloaded from YM500v3 (http://driverdb.tms.cmu.edu.tw/ym500v3/knownmir_sample.php).

Results

Characteristics of patient cohort and expression of miR-146b in PTC tissues

miR-146b-5p exhibited different expression patterns in different organs and tumors (Figures 1 and 2). The PTC cohort in TCGA contained 507 cases of tumor tissues and 59 normal thyroid glands as controls. The level of miR-146b precursor was pronouncedly overexpressed in PTC tissues as evidenced by TCGA data (Table 1 and Figure 3A). More importantly, the AUC of the ROC for miR-146b to diagnose cancer tissues from non-cancerous counterparts was high, with a value of 0.914 (Figure 3B). Furthermore, miR-146b levels were significantly higher in cases with lymph node metastasis than without. Patients
miR-146b-5p in papillary thyroid cancer

Table 1. Relationship between miR-146b expression and clinicopathological parameters in PTC patients

<table>
<thead>
<tr>
<th>Clinicopathological Features</th>
<th>N</th>
<th>miR-146b relative expression</th>
<th>Mean ± SD</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal thyroid</td>
<td>59</td>
<td>11.116057±1.0881889</td>
<td>-27.043</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>PTC</td>
<td>507</td>
<td>16.056852±2.5976889</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>368</td>
<td>16.091061±2.5997697</td>
<td>0.595</td>
<td>0.552</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>136</td>
<td>15.935675±2.6172809</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><mean</td>
<td>298</td>
<td>16.153317±2.4915347</td>
<td>0.998</td>
<td>0.319</td>
<td></td>
</tr>
<tr>
<td>≥mean</td>
<td>209</td>
<td>15.919308±2.7421695</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><45</td>
<td>228</td>
<td>16.197265±2.3567735</td>
<td>1.180</td>
<td>0.238</td>
<td></td>
</tr>
<tr>
<td>≥45</td>
<td>276</td>
<td>15.926760±2.780713</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-II</td>
<td>312</td>
<td>15.749070±2.7391348</td>
<td>-3.483</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>III-IV</td>
<td>193</td>
<td>16.536118±2.2827869</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nx-N0</td>
<td>280</td>
<td>15.229561±2.9487809</td>
<td>-8.973</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>224</td>
<td>17.073595±1.5825420</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mx-M0</td>
<td>494</td>
<td>16.051258±2.6110990</td>
<td>-0.497</td>
<td>0.619</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>9</td>
<td>16.485906±1.5780113</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathologic stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-II</td>
<td>338</td>
<td>15.734840±2.7519345</td>
<td>-4.277</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>III-IV</td>
<td>167</td>
<td>16.687454±2.1315250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focus types</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unifocal</td>
<td>268</td>
<td>16.096057±2.5014009</td>
<td>0.346</td>
<td>0.730</td>
<td></td>
</tr>
<tr>
<td>Multifocal</td>
<td>226</td>
<td>16.015166±2.6948302</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extrathyroid extension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>334</td>
<td>15.672182±2.8114920</td>
<td>-6.448</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>152</td>
<td>17.012230±1.7226757</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtypes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classical/usual</td>
<td>357</td>
<td>16.654161±2.1341696</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follicular</td>
<td>103</td>
<td>13.418366±2.8286974</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tall cell</td>
<td>37</td>
<td>17.319059±1.1982802</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LSD test: Classical/usual vs. Follicular P<0.001, Classical/usual vs. Tall Cell P=0.086, Follicular vs. Tall Cell P<0.001.

Figure 3. Expression level of precursor miR-146b in thyroid cancer from TCGA. A: NT: non-tumorous tissues; T: tumor. B: ROC curve.

in advanced stages showed higher levels of miR-146b than those in early stages. Moreover, cases with extrathyroid extension also had markedly higher levels of miR-146b compared to those without (Table 1). However, miR-146b was not significantly correlated with other clinical parameters, including prognosis (Table 1 and Figure 4).
miR-146b-5p in papillary thyroid cancer

Figure 4. Prognostic value of miR-146b in thyroid cancer from TCGA. A: Disease-free survival; B: Overall survival.

Figure 5. Functional annotation of DAVID GO terms enriched by the potential target mRNAs of miR-146b-5p. The ten most significant GO terms for Biological process (BP) and all significant GO terms for Cellular component (CC) and Molecular function (MF) are displayed.
miR-146b-5p in papillary thyroid cancer

Figure 6. Signaling pathways of putative miR-146b-5p target genes by GO term enrichment. A: Biological process (BP); B: Cellular component (CC); C: Molecular function (MF).

Optimal candidate targets of miR-146b-5p in PTC

From the GSE76050 dataset, 6273 differentially expressed genes were identified as potential targets with the analysis described in the methods. With respect to the twelve miRNA databases, 4228 genes were identified as predicted targets of miR-146b-5p. Taking the intersection of the two sets of candidates, 994 genes were considered to be optimal candidate targets of miR-146b-5p in PTC.

Functional annotation of target genes

The PPI network consisted of a total of 249 nodes and 180 edges. The following genes with a degree value greater than six were identified as hub genes: CBL (degree=14), CRK (degree=9), FURIN (degree=9), JAK2 (degree=8), FLT3 (degree=8), PLCG1 (degree=8), DOK1 (degree=7), CDK5 (degree=7), CSK (degree=7), and PIA S4 (degree=7).

According to the results of GO analysis, the targets of miR-146b-5p were significantly involved in biological processes including intracellular signaling cascade, regulation of programmed cell death, and positive regulation of cellular biosynthetic processes. Among the cellular components, the targets were most enriched in the insoluble fraction, cell fraction, and membrane fraction. In terms of molecular function, the targets were significantly associated with transcriptional regulator activity and transcriptional activator activity (Figures 5 and 6). Moreover, KEGG pathway analysis indicated that the targets of miR-146b-5p were closely associated with 36 signaling pathways, specifically Pancreatic cancer, Pathways in cancer, and Apoptosis (Figure 7). These potential targets of miR-146b-5p from the top three KEGG pathways were shown in heatmaps by GSEA (Figures 8-10). The PPI maps in Figure 11 showed the target genes within the two most significant pathways from KEGG analysis. We next further validated the nine genes in the PPI of ‘Pathways in cancer’, as this is the key pathway associated with all malignancies. Interestingly, two genes, TRAF1 (Figure 12) and PML (Figure 13), showed down-regulation in their mRNA levels as compared to non-cancerous controls. Consistently, their protein levels were also decreased as shown by The Human Protein Atlas (Figures 14 and 15). However, due to the limited number of cases from The Human Protein Atlas, these differences were not statistically significant.

Discussion

MiR-146b-5p has been reported to exert oncogenic or tumor-suppressor effects on the occurrence and progression of various human cancers [30-34]. Overexpression of miR-146b-5p plays an oncogenic role in PTC tissues, and several studies have investigated the molecular function of miR-146-5p and its related target genes in PTC [11, 18, 22-25, 27, 28, 35, 36]. However, little is known about the precise interaction network of miR-146-5p targets. Since a single miRNA can regulate multiple target genes involved in intricate biological processes and signaling pathways, bioinformatics tools including target prediction software, Gene Ontology Enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes pathway analysis may help to achieve a more compre-
Figure 8. Heatmap of genes from the pathway ‘Pancreatic cancer’. The heatmap contains 17 genes and was generated by GSEA (http://software.broadinstitute.org/gsea/datasets.jsp).
miR-146b-5p in papillary thyroid cancer

Figure 9. Heatmap of genes from the pathway ‘Pathways in cancer’. The heatmap contains 40 genes and was generated by GSEA (http://software.broadinstitute.org/gsea/datasets.jsp).
miR-146b-5p in papillary thyroid cancer

Figure 10. Heatmap of genes from the pathway ‘Apoptosis’. The heatmap contains 17 genes and was generated by GSEA (http://software.broadinstitute.org/gsea/datasets.jsp).
Figure 11. Protein–protein interaction (PPI) network of selected miR-146b-5p target genes. A: Genes from the pathway ‘Pancreatic cancer’; B: Genes from the pathway ‘Pathways in cancer’.

A comprehensive understanding of the molecular mechanisms behind miR-146b-5p in PTC [37-40].

Our set of 994 probable candidate target genes of miR-146b-5p originated from the intersection of genes found in the GSE76050 dataset comparing miR-146b-5p and mock-transfected cells, with genes identified by the twelve online prediction programs, to increase the probability that these genes were truly target genes of miR-146b-5p in PTC. Among the numerous target genes of miR-146b-5p, hub genes with extensive connections with other target genes might be the most crucial downstream molecules, thus focusing on the hub genes of miR-146b-5p targets will allow us to dive deeper into the underlying mechanism. The hub genes identified from the PPI network revealed potential key targets in the pathogenesis of miR-146b-5p-related PTC. Some of the hub genes, including CBL, CrK, Furin, and CDK5, play pivotal roles in regulating multiple biological processes through signaling transduction or interactions with their corresponding substrates. The CBL family, a class of ubiquitin ligases, might act as tumor suppressors in human cancers by ubiquitinating active RTKs, promoting their subsequent degradation [41]. CrK is a signaling adapter protein that modulates cell motility, proliferation, and invasion by activating small GTPases including Ras, Rac, and Rap [42]. Furin belongs to the proprotein convertase (PC) family and cleaves proteins vital to the progression and metastasis of cancer cells including IGF1R, VEGF-C, PDGF and MT1-MMP [43]. CDK5 is a member of the cyclin-dependent kinase (CDK) family, which are involved in the regulation of neuronal migration, synaptic activity and neuronal cell survival and death [44-47]. Abnormal expression of these proteins was reported in previous studies to be associated with various human cancers. Furthermore, missense mutations of CBL genes have been discovered in PTC [48, 49], which increases the robustness of our results. The function of these genes described above might help explain the molecular mechanism of miR-146b-5p in PTC. Moreover, some hub genes, such as JAK2, FLT3, DOK1, and PIAS4, play important roles in specific cancers including leukemia and renal clear-cell carcinoma [50-58]. We hypothesize that these genes may exert influences on the progression of PTC through similar interactions as in other cancers, or through other unknown molecular mechanisms.
After identifying the hub genes of miR-146b-5p, we further carried out GO enrichment analysis. These results revealed that the target genes of miR-146b-5p were most significantly associated with GO terms related to cell death, apoptosis, and transcriptional activity, which implies that the target genes of miR-146b-5p may influence the malignant behavior of PTC by regulating these biological processes and molecular functions. Signaling pathways are important forms of interaction between molecules. Therefore, analysis of significant signaling pathways is also indispensable for a more thorough understanding of the molecular mechanisms of miR-146b-5p in PTC. According to results from the KEGG pathway analysis, the ten most significant pathways were all closely correlated with cancers. Most of these pathways were directly associated with human cancers, including Pancreatic cancer, Pathways in cancer, Apoptosis, Colorectal cancer, Glioma, Chronic myeloid leukemia, Prostate cancer, and Acute myeloid leukemia. To illustrate the interactions between target genes in these KEGG pathways, three PPI maps corresponding to the three most significant KEGG pathways were constructed. Each of the maps contain nodes with high

Figure 12. mRNA levels of the hub gene TRAF1 from TCGA data. Median expression of TRAF1 in the normal thyroid gland (A) and tumor samples (B) in bodymap. (C) Gene expression of TRAF1 across all tumor samples (Red) and paired normal tissues (Blue) of thyroid cancer. Bar heights represent the median expression from tumors or normal tissue. (Bar plot, Log2(TPM + 1) Scale). Data were downloaded from GEPIA.

Figure 13. mRNA levels of the hub gene PML from TCGA data. Median expression of PML in the normal thyroid gland (A) and tumor samples (B) in bodymap. (C) Gene expression of PML across all tumor samples (Red) and paired normal tissues (Blue) of thyroid cancer. Bar heights represent the median expression from tumors or normal tissue. (Bar plot, Log2(TPM + 1) Scale). Data were downloaded from GEPIA.
miR-146b-5p in papillary thyroid cancer

degrees (degree≥1), which suggests that these genes may play key roles in their corresponding signaling pathways to contribute to PTC development. It is necessary to highlight two key genes, TRAF1 and PML, which have great potential to be real targets of miR-146b-5p in PTC as shown by the down-regulation of their mRNA and protein levels as assessed by TCGA and The Human Protein Atlas data. This identification of relevant pathways and hub genes may help us to achieve a deeper understanding of the underlying molecular mechanisms of miR-146b-5p in PTC.

In conclusion, miR-146b-5p may play an essential role in PTC by regulating specific target genes and signaling pathways related to cancer, promoting the malignant potential of PTC. Future experimental work is needed to validate these hub genes and signaling pathways.

Acknowledgements

We would like to thank the Funds of Guangxi Health Bureau Research Project (Z2012053), the Scientific Research Project of the Guangxi Education Agency (KY2015YB180), and the Research Project of the Guangxi University of Science and Technology (1419-222). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. We acknowledge the TCGA, GEPIA, and the Human Protein Atlas for providing the relevant data.

Figure 14. Protein level of the hub gene TRAF1 from The Human Protein Atlas data. TRAF1 protein was detected with the antibody HPA001852, and the staining pattern indicated cytoplasmic/membranous localization. A-D: Thyroid gland (T-96000), Male, age 61, Normal tissue, NOS (M-00100), Patient ID: 2072. Staining: Medium, Intensity: Moderate. E-H: Thyroid gland (T-96000), Male, age 20, Papillary adenocarcinoma, NOS (M-82603), Patient ID: 688. Staining: Not detected, Intensity: Negative. A, C, E, G: x100; B, D, F, H: x400.
miR-146b-5p in papillary thyroid cancer

Disclosure of conflict of interest

None.

Address correspondence to:
Wei Ma, Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China. E-mail: mawei_gxmu@163.com; Hong Yang, Department of Medical Ultrasonography, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China. E-mail: yang_honggx@163.com

References

miR-146b-5p in papillary thyroid cancer

miR-146b-5p in papillary thyroid cancer

[49] Pitt SC, Hernandez RA, Nehs MA, Gawande AA, Moore FD Jr, Ruan DT and Cho NL. Identifica-
miR-146b-5p in papillary thyroid cancer

