Review Article
Efficacy of combined intravitreal anti-vascular endothelial growth factor and photodynamic therapy for non-age related macular degeneration sourced choroidal neovascularization: a systematic review and meta-analysis

Bing Liu¹*, Tuo Deng²³⁴*, Jingxiang Zhong¹

¹Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China; ²Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; ³Guangzhou Institute of Urology, Guangzhou, China; ⁴Guangdong Key Laboratory of Urology, Guangzhou, China. *Equal contributors.

Received August 10, 2017; Accepted December 6, 2017; Epub January 15, 2018; Published January 30, 2018

Abstract: Purpose: Our study aimed to explore the efficacy of combined photo dynamic therapy (PDT) and intravitreal anti-vascular endothelial growth factor (VEGF) agents for non-age related macular degeneration (AMD) sourced choroidal neovascularization (CNV) through a meta-analysis. Methods: A literature search on online databases was performed to extract relevant data. Mean differences (MDs) of best-corrected visual acuity (BCVA) changes and numbers of anti-VEGF injections from combined and monotherapy groups were pooled and compared. Results: No significant difference of BCVA changes was discovered between two groups (MD = -0.29, 95% CI, -0.86 to 0.28, P = 0.32). However, combined therapy could significantly reduce the number of anti-VEGF injections (MD = -1.08, 95% CI, -1.97 to -1.09, P = 0.02). Conclusions: We concluded that combined therapy was not superior to anti-VEGF injections in improving BCVA among patients suffering non-AMD sourced CNV. But combined therapy could decrease the number of anti-VEGF treatments, reduce severe side effects and relieve the burden of younger patients.

Keywords: Anti-vascular endothelial growth factor, photo dynamic therapy, choroidal neovascularization, systematic review, meta-analysis

Introduction

Choroidal neovascularization (CNV) is a common pathological complication of a variety of ocular diseases, especially those related to the posterior segment. With marked neovascularization originating from choriocapillaries and breaking through the Bruch’s membrane, CNV could lead to a series of lesions including subretinal and/or intraretinal haemorrhage, leakage and fibrosis [1]. Patients have a relative poor prognosis and are confronted with the risk of blindness, bearing a low quality of life. Although the most common cause for CNV is age-related macular degeneration (AMD) mainly affecting people older than 50 years [2], many young patients with non-AMD sourced CNV suffer more pain and inconvenience owing to their longer careers and high burden of raising families.

Pathological myopia (PM) is the second CNV cause following AMD, making impacts on young to middle-aged people with the prevalence of 3% in the population approximate 5%-10% developing to CNV [3, 4]. It is worth noting that Asians seem more susceptible to myopic CNV, probably due to some genetic factors and lacking outdoor activities [3]. Idiopathic choroidal neovascularization (ICNV) occupies approximately 17% of CNV [5] without any specific etiologies. Other non-AMD causes include ocular histoplasmosis, angioid streaks (AS), multifocal choroiditis, punctate inner choroidopathy, trauma, ocular tumors and infections [6]. These diseases are considered to share a more favour-
Combined anti-VEGF and PDT for non-AMD sourced CNV

CNV. Therefore, we aimed to perform a systematic review and meta-analysis focusing on PDT plus anti-VEGF combined therapy on CNV other than AMD causes, and provide more instructions for CNV treatments among younger patients.

Materials and methods

Search strategy and study selection

A comprehensive electronic literature search based on Pubmed, Embase, Cochrane Library, CNKI and VIP databases was performed to confirm studies in English and Chinese and cited references in these studies were also screened. The last search was on May 3rd, 2017. Searching terms were used as follows: “PDT” or ‘photodynamic therapy’ and “Ranibizumab’ or ‘Bevacizumab’ or ‘anti vascular endothelial growth factor’ or ‘anti VEGF’ in combination with “choroidal neovascularization” or ‘CNV’.

Comparatives studies concerning combined intravitreal anti-VEGF agents and PDT met the inclusion criteria of our meta-analysis, in which baseline and follow-up data of best corrected visual acuity (BCVA) or central macular thickness (CMT) could be achieved. Accordingly, animal studies, case reports, conference proceedings, repeated publications, non-published materials, reviews and editorials were excluded.

Data extraction and study quality assessment

Two authors screened the literature, assessed the quality of studies and extracted data separately with discrepancies solved by the third reviewer or open discussion. Data from included studies was collected as follows: first author, year of publication, country, ethnicity, study design, therapeutic regimen, sample size, patients’ basic information, baseline and follow-up data of BCVA and CMT. Numbers of anti-VEGF injections and PDTs were also extracted with their main adverse events recorded. The level of evidence (LOE) of each study was evalu-
Table 1. Baseline characteristics of included studies

<table>
<thead>
<tr>
<th>Reference</th>
<th>Country</th>
<th>Race</th>
<th>CNV cause</th>
<th>Design</th>
<th>LOE</th>
<th>No. eyes/patients</th>
<th>Intervention groups, sample (n)</th>
<th>Follow-up time (mo)</th>
<th>CNV location</th>
<th>Gender (M/F)</th>
<th>Mean age (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rinaldi et al, 2017</td>
<td>Italy</td>
<td>Caucasian</td>
<td>PM</td>
<td>RCT</td>
<td>2a</td>
<td>40/40</td>
<td>Group 1: PDT+IVR, 20 Group 2: IVR, 20</td>
<td>12</td>
<td>37</td>
<td>23</td>
<td>26/34</td>
</tr>
<tr>
<td>Saviano et al, 2016</td>
<td>Italy</td>
<td>Caucasian</td>
<td>Myopic CNV</td>
<td>RCT</td>
<td>2a</td>
<td>34/34</td>
<td>Group 1: PDT+IVB, 17 Group 2: IVB, 17</td>
<td>12</td>
<td>NA</td>
<td>8/26</td>
<td></td>
</tr>
<tr>
<td>Ye et al, 2013</td>
<td>China</td>
<td>Asian</td>
<td>ICNV</td>
<td>RCT</td>
<td>2a</td>
<td>27/27</td>
<td>Group 1: PDT+IVR, 14 Group 2: IVR, 13</td>
<td>12</td>
<td>NA</td>
<td>12/15</td>
<td></td>
</tr>
<tr>
<td>Huang et al, 2011</td>
<td>China</td>
<td>Asian</td>
<td>ICNV</td>
<td>RCT</td>
<td>2b</td>
<td>46/46</td>
<td>Group 1: PDT+IVB, 24 Group 2: PDT, 22</td>
<td>12</td>
<td>NA</td>
<td>15/31</td>
<td></td>
</tr>
<tr>
<td>Li et al, 2015</td>
<td>China</td>
<td>Asian</td>
<td>ICNV</td>
<td>RCT</td>
<td>2b</td>
<td>30/30</td>
<td>Group 1: PDT+IVB, 15 Group 2: PDT, 15</td>
<td>3</td>
<td>NA</td>
<td>12/18 24-52</td>
<td></td>
</tr>
</tbody>
</table>

CNV: choroidal neovascularization; LOE: level of evidence; PM: pathological myopia; RCT: randomized controlled trial; PDT: photodynamic therapy; IVR: intravitreal Ranibizumab; IVB: intravitreal Bevacizumab; NA: not available. ※ Myopia: 47.8%, presumed ocular histoplasmosis: 21.7%, angiod streaks: 13%, others: 17.5%.
Combined anti-VEGF and PDT for non-AMD sourced CNV

statistics analysis

Software RevMan (version 5.3; Cochrane Collaboration, Oxford, UK) was applied to conduct the statistics analysis. Weighted mean differences (WMD) were calculated to compare changes of BCVA and CMT and number of anti-VEGF injections. Standard mean difference (SMD) was used if measuring methods varied in different studies. Subgroup analyses were conducted based on the follow-up time. Heterogeneity test was conducted through the chi-square test with Cochrane Q and \(I^2 \) statistic [15]. Significant heterogeneity did not exist if the \(P \)-value was greater than 0.1 and \(I^2 < 50\% \) and the fixed effect model was applied. Conversely, a random-effect model was used. A two-sided \(p \) value < 0.05 was considered to be significant in meta-analysis. Publication bias was also assessed through inverted funnel plot [16].

Result

A total of 398 patients with 421 eyes from 8 comparative studies were included in our systematic review and the flow chart was shown in Figure 1. Among them 5 were randomized controlled trial (RCT)s [17-21] and the other 3 were retrospective comparative studies [22-24]. 4 studies compared combined anti-VEGF and PDT with anti-VEGF monotherapy [17-19, 23], 2 studies concentrated on the efficacy of anti-VEGF and PDT versus PDT alone [20, 21], and other 2 studies divided their patients into combined therapy, anti-VEGF and PDT groups for further comparisons [22, 24]. Except for 2 studies conducted among Caucasians in Italy and 1 in USA, the remaining 6 were all carried out in Asian countries with 4 in China, 1 in Korea and 1 in India. All studies performed anti-VEGF therapies with the dose of Bevacizumab 0.5 mg/0.05 ml or Ranibizumab 1.25 mg/0.05 ml, and verteporfin was infused 6 mg/m² in PDT. Basic information of these included studies was listed in Table 1.

Quality assessments of included studies

Level of evidence (LOE) of all included studies was listed in Table 1. The risk of detection, attrition biases and reporting biases of 5 RCTs were relative low according to the Cochrane Collaboration Risk of Bias Tool (Figure 2A). In total, 3 studies were in low bias risk and 2 were in moderate bias risk (Figure 2B).

Change of best corrected visual acuity

All 8 studies compared BCVA changes between PDT plus anti-VEGF and monotherapy groups. Among 6 studies focusing on the BCVA improvements of combined treatment versus anti-VEGF injection, data from 5 of them was extracted and pooled in Figure 3A. No significant advantage was observed in combined group (SMD = -0.29, 95% CI, -0.86 to 0.28, \(P = 0.32 \)). Subgroup analysis in 12 months’ follow-up group also indicated no significant differences (SMD = -0.40, 95% CI, -1.12 to 0.31, \(P = 0.27 \)). Significant heterogeneity existed in the cu-
Cumulative analysis of 5 studies ($I^2 = 78\%$, $P = 0.001$) and subgroup analysis for 4 studies ($I^2 = 80\%$, $P = 0.002$). 4 studies researched the efficacy of combined therapy compared with PDT alone, 3 of which were included in meta-analysis. We found no significant changes in BCVA between two groups (WMD = 0.06, 95% CI, -0.01 to 0.14, $P = 0.11$) and in either subgroup according to follow-up time (Figure 3B). 2 studies applied changes of lines for the description of BCVA at the 12 months’ follow-up time [20, 23]. According to their studies, no significant differences were discovered between two groups in the percentage of patients with BCVA increasing ≥ 2 lines, stable in 1 line and decreasing ≥ 2 lines.

Change of central macular thickness

Figure 4 indicated 2 studies comparing changes of CMT between combined therapy and anti-VEGF groups. Significant more CMT reduces were tested in combined group than anti-VEGF monotherapy (MD = -27.22, 95% CI, -45.17 to -8.73, $P = 0.04$). Li et al found CMT decreased more in combined group in comparison with PDT at the 3-month follow-up time [21].

Number of treatment

Table 2 provided the detailed treatment regimen of all included studies. 5 of them calculated mean number of anti-VEGF injections between combined and monotherapy groups at the 12-month’s follow-up. We reached the result that the number of anti-VEGF agents injected in combined group was significantly lower than in monotherapy group (MD = -1.08, 95% CI, -1.97 to -1.09, $P = 0.02$) (Figure 5). Time of PDT was compared in 2 studies focusing on combined therapy versus PDT alone with the data shown in Table 2.
Table 2. Treatment regimens of included studies

<table>
<thead>
<tr>
<th>Reference</th>
<th>Design</th>
<th>Intervention</th>
<th>Injections of anti-VEGF, n</th>
<th>No. of PDT, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rinaldi et al,</td>
<td>RCT</td>
<td>Group 1: PDT+IVR, 1 IVR injection and after 7 days with PDT</td>
<td>1.25 ± 2.45</td>
<td>3.35 ± 2.45</td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td>Group 2: IVR, 1 IVR at baseline and at week 4 and 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saviano et al,</td>
<td>RCT</td>
<td>Group 1: PDT+IVB, 1 IVB injection followed by PDT within 7 d</td>
<td>1.8 ± 0.11</td>
<td>3.1 ± 0.08</td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td>Group 2: IVB, 3 monthly IVB injections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rishi et al,</td>
<td>Retrospective comparative trial</td>
<td>Group 1: PDT+IVB/R, anti-VEGF treatment was given within 2 days of PDT</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td>Group 2: IVB/R, given as PRN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rishi et al,</td>
<td>Retrospective comparative trial</td>
<td>Group 1: PDT+IVB/R, anti-VEGF treatment was given within 2 days of PDT</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td>Group 2: IVB/R, given as PRN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen et al,</td>
<td>Retrospective comparative trial</td>
<td>Group 1: PDT+IVB, 1 IVB injection within 3 days of PDT</td>
<td>2 ± 3.66</td>
<td>7.2 ± 3.66</td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td>Group 2: IVB, given as PRN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoon et al,</td>
<td>Retrospective comparative trial</td>
<td>Group 1: PDT+IVB, 1 IVB injection within 3 days of PDT</td>
<td>2.5 ± 1.9</td>
<td>2.2 ± 2.0</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td>Group 2: IVB/R, given as PRN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ye et al,</td>
<td>RCT</td>
<td>Group 1: PDT+IVR, 1 IVR injection was given 7 days after PDT</td>
<td>1.5 ± 0.7</td>
<td>2.4 ± 1.7</td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td>Group 2: IVR, 1 IVR at baseline and at week 4 and 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huang et al,</td>
<td>RCT</td>
<td>Group 1: PDT+IVB, 1 IVB injection was given 7 days after PDT</td>
<td>NA</td>
<td>1</td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td>Group 2: PDT, additional treatments were given in a 3-month interval</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li et al,</td>
<td>RCT</td>
<td>Group 1: PDT+IVR, 1 IVR injection was given 7 days after PDT</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td>Group 2: PDT, regimen was unavailable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VEGF: vascular endothelial growth factor; RCT: randomized controlled trial; PDT: photodynamic therapy; IVR: intravitreal Ranibizumab; IVB: intravitreal Bevacizumab; PRN: pro re nata; NA: not available. ※: All anti-VEGF retreatments were conducted as PRN.
Combined anti-VEGF and PDT for non-AMD sourced CNV

Adverse events

2 studies reported no severe complications in both combined and monotherapy groups [23, 24]. Most frequent reported adverse events were conjunctival hemorrhage, choriocapillaris atrophy and macular scar (Table 3). Rinaldi F et al reported a higher percentage of choriocapillaris atrophy in combined therapy than anti-VEGF alone group [17]. A 50.6% rate of macular scar was found in Rishi et al’s studies in their long observation for almost 9 years [22].

Publication bias

The inverted funnel plot did not indicate any publication bias for all results in our meta-analysis.

Discussion

Our systematic review and meta-analysis consisted of 8 comparative studies. To the best of our knowledge, it is the first meta-analysis providing summarized conclusions related to combined PDT and anti-VEGF therapy for non-AMD related CNV. We discovered that patients’ BCVA did not increase significantly in combined group versus any monotherapy. Significant decrease of CMT was found in PDT plus anti-VEGF therapy compared with anti-VEGF injections alone. Furthermore, patients in combined therapy group received significant less number of anti-VEGF injections than those with monotherapy.

Treatment of CNV changed from earlier surgical remove, lasers, PDT to recent anti-VEGF therapies. PDT was used to be the mainstream treat-
Combined anti-VEGF and PDT for non-AMD sourced CNV

ment by selectively occluding the leakage from CNV without damaging healthy retina, however, apparent adverse events such as RPE and choriocapillaries atrophy might influence its further efficacy [25]. Therefore, appearance of anti-VEGF drugs has brought about a new and hopeful method targeting to CNV diseases. VEGF plays a dominant role in angiogenesis by promoting the activities of present endothelia cells, causing vascular abnormalities, stimulating neovascularization and increasing the permeability of vascular walls [26]. Subsequently, hemorrhage and edema begin to accumulate in intraretinal or subretinal space, leading to deteriorating of visual acuity and increase of CMT. Bevacizumab is a kind of full-length anti-VEGF-A monoclonal antibody preventing VEGF from combining with its receptors Flt-1 and KDR. Ranibizumab is a selected mutated Fab fragment of a humanized monoclonal antibody, having a relative higher affinity than Bevacizumab [27]. Both of them could not only eliminate active CNV, but also inhibit further neovascularization [28], thus to relieve patients’ symptoms and increase their visual acuity.

Unlike AMD-sourced CNV with a standard treatment protocol of anti-VEGF injections, CNV originated from pathological myopia or other sources had no optimal treatments or guidelines yet. In former original studies and reviews concerning the comparison of anti-VEGF and PDT, a variety of them confirmed that anti-VEGF drugs were beneficial on patients with non-AMD sourced CNV, safer and more effective than PDT [28, 29]. Trials of combined therapy conducted by Saviano et al [18], Chen et al [23] and Yoon et al [24] showed no significant differences between PDT plus anti-VEGF and anti-VEGF alone groups, which were consistent with our results. Although applied widely before the occurrence of anti-VEGF agents, PDT could actually upregulate the expression of VEGF and pigment epithelium derived factor, causing a microenvironment of pro-angiogenesis and inhibiting the efficacy [30]. Obvious choriocapillaris atrophy was also observed in groups treated by PDT in several studies [17, 22] and Rinaldi et al reported a higher rate of choriocapillaris atrophy in standard-fluence PDT than reduced-fluence PDT [17]. Therefore, a combination of PDT and anti-VEGF could provide complementary effects. In Huang et al [20] and Li et al [21]’s studies, combined therapy was superior to PDT alone in BCVA change, however, our cumulative analysis found no significant difference between two groups, probably due to limited number of included studies and samples.

In our meta-analysis, we concluded that the number of anti-VEGF injections were significant less in combined group compared with anti-VEGF monotherapy, which might be an apparent advantage of combined therapy. Repeated intravitreal injections of anti-VEGF agents are necessary according to pro re nata (PRN) frequencies, accompanied with some severe adverse events such as endophthalmitis, which could cause blindness though seldom occurred [31]. Patients with myopic CNVs are more susceptible to retinal rupture and even retinal detachment resulted from peripheral vitreoretinal degeneration. Multiple punctures would cause some traction and then increase this kind of risk, which could be reduced by an extra PDT [18]. Frequent visits to hospital and injections bring about inconvenience to pregnant female patients and those bearing cardiovascular diseases [12, 23]. Moreover, the fewer injections could also reduce the economic burden of patients from the relative high cost of anti-VEGF agents.

Several limitations occurred in our systematic review and meta-analysis. Firstly, only 8 comparative studies were included and 5 of them were RCTs with inadequate samples, influencing the validity of our results. Further RCTs with larger sample size are necessary to provide more accurate evidences for treatment. Secondly, follow-up varied among studies from 3 month to 9 years, causing significant heterogeneity after combining related data. Number of studies in each subgroup was not enough for a more convinced result. Thirdly, patients from 5 studies came from Asian countries and few Caucasians or other races were researched, partly because of the high prevalence of myopia in Asian countries. These above limitations decreased power of evidences to some degree.

Conclusion

We concluded that no significant differences between PDT plus anti-VEGF injections and anti-VEGF monotherapy in improving BCVA among patients suffering non-AMD sourced CNV. However, combined therapy could significantly reduce the number of anti-VEGF treat-
Combined anti-VEGF and PDT for non-AMD sourced CNV

tments, lower the risk of severe side effects and relieve the burden of younger patients. In summary, anti-VEGF drugs have been commonly applied on CNV other than AMD cause, with the assistance of PDT if necessary. Further RCTs with larger samples and in higher quality are still needed to guide normative treating regimens for non-AMD sourced CNVs.

Acknowledgements

This work was supported by grants from Natural Science Foundation (No. 2014A030313359), Science and Technology Planning Project (No. 2015B020226003) of Guangdong Province, China, and China Postdoctoral Science Foundation (No. 2017M612636 and No. 2017M62-2912).

Disclosure of conflict of interest

None.

Address correspondence to: Jingxiang Zhong, Department of Ophthalmology, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Guangzhou, Guangdong Province, China. Tel: +86-20-85221206; E-mail: zjx85221206@yeah.net

References

Combined anti-VEGF and PDT for non-AMD sourced CNV

