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Figure 5. Induction of apoptosis of hu-
man mesangial cells by triptolide and 
analysis of cell viability (A, B). #P<0.05 
vs control, *P<0.05 vs LPS. 

Morphological changes of HMCs

The results showed that compared with the 
blank control group, cells in each treatment 
group appeared to have a different degree of 
morphological change, as based on inverted 
phase-contrast microscopy. In the triptolide 
treatment groups, some cells changed from  
an irregular elliptical shape to a circular mor-
phology, and the morphology changes became 
more notable with increasing drug concen- 
tration (Figure 3).

Transmission electron microscopy 

Transmission electron microscopy was then 
used to investigate the ultrastructure of apop-
totic cells. The cells in the control group were 
round with tiny villous projections of the cell 
membrane. Many plasmosomes were distribu- 
ted in the nucleus, and the structure of the 
mitochondria was clear; the rough endoplas- 
mic reticulum was streaky, and lipid droplets 
were found in the cytoplasm. In the triptolide 
treatment groups, HMC growth was clearly in- 
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Figure 6. Cell cycle analy-
sis of each group by flow 
cytometry (A, B). #P<0.05 
or ##P<0.01 vs control, 
*P<0.05 or **P<0.01 vs 
LPS. 

hibited, cell volume gradually declined, and the 
surface villous structure decreased or disap-
peared. In addition, there were fewer multiple 
nucleoli, and mitochondrial swelling was ob- 
served; the endoplasmic reticulum was slen-
der; and a scattered distribution of lipid drop-
lets was observed in the cytoplasm. With reg- 
ard to the 40 ng/ml triptolide treatment gr- 
oup, the cell morphology was rounded, and ce- 
ll surface microvilli-like processes were abun-
dant. The nucleus was irregular, and nuclear 
chromatin was condensed, agglutinated, and 

fragmented, showing apoptotic cell-like chang-
es. Apoptotic bodies were observed, cell swell-
ing was present, and necrosis, cell membrane 
dissolution, disappearance, and interruption 
were observed. In addition, cytoplasmic organ-
elles had dissolved (Figure 4).

Induction of HMC apoptosis by triptolide 

The results revealed that exposure of HMCs  
to triptolide significantly enhanced apoptosis 
(P<0.05). Treatment with FBS, LPS and 10, 20, 
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and 40 ng/mL triptolide for 24 h resulted in 
(9.23 ± 1.86)%, (3.34 ± 1.36)%, (11.49 ± 
2.40)%, (18.06 ± 2.20)%, and (26.02 ± 2.37)% 
apoptosis, respectively, in each group of cells 
(Figure 5A and 5B).

Induction of the cell cycle in HMCs by triptolide

Flow cytometry showed that LPS could promo- 
te HMC from G0/G1 phase to S phase, however, 
after triptolide teatment, the proportion of ce- 
lls in S phase decreased gradually, the pro- 
portion of cells in G0/G1 phase gradually in- 
creased, mitotic cells were arrested in G0 pha- 
se (p<0.05 or p<0.01) (Figure 6A and 6B).

Immunofluorescence in HMCs

To further elucidate how triptolide prevents 
renal interstitial fibrosis, we investigated its 

ability to regulate HMC function. Double im- 
munofluorescence staining was performed us- 
ing antibodies directed against α-SMA, and the 
results indicated that triptolide down-regulat- 
ed α-SMA in these cells. Additionally, α-SMA 
was significantly higher in the LPS group com-
pared with the normal group. However, after 
triptolide treatment for 24 h, the levels of α- 
SMA expression decreased significantly at all 
doses (Figure 7A, 7B).

Inhibition of TGF-β1, Smad2, p-Smad2, Smad3 
and p-Smad3 expression by triptolide

The effect of triptolide on TGF-β1, Smad2, ph- 
ospho (p)-Smad2, Smad3 and p-Smad3 expr- 
ession in LPS-treated HMCs was also investi-
gated. Elevation of TGF-β1 expression due to 
LPS in HMCs was significantly reduced by trip-
tolide, and similar changes were found for the 

Figure 7. Double immunofluorescence analysis of 
α-SMA in each group using the cell differentiation 
marker α-SMA (green). DAPI (blue) was used as a 
nuclear stain (A). Quantification of RT-PCR results 
showing mRNA levels of α-SMA in each groups 
(B). ##P<0.01 vs control, **P<0.05 vs LPS. Images 
were taken under ×200 magnification.
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Figure 8. Quantification of the 
mRNA expression of TGF-β1 (A). 
Western blot analysis results show-
ing the TGF-β1, Smad2, p-Smad2, 
Smad3 and p-Smad3 protein lev-
els in each group (B) and Western 
blot results showing protein levels 
of TGF-β1 (C), p-Smad2/Smad2 
(D), p-Smad3/Smad3 (E). #P<0.05 
or ##P<0.01 vs control, *P<0.05 or 
**P<0.01 vs LPS.

levels of p-Smad2 and p-Smad3 (P<0.05 or 
P<0.01). In contrast, triptolide downregulated 
TGF-β1, p-Smad2 and p-Smad3 protein expr- 
ession in a dose-dependent manner (Figure 
8A-E).

Discussion

Triptolide is an active component of TwHF. In 
addition to its classic immunosuppressive pr- 
operties [18], triptolide causes cell cycle arrest, 
inhibits cell proliferation, induces apoptosis, 
reduces proteinuria, and accelerates glomeru-
lar injury repair during the treatment of rats 
with nephritis [19]. All these effects are gaining 
increasing attention. Under normal physiologi-
cal conditions, glomerular mesangial cell  
proliferation and apoptosis are in dynamic  
equilibrium. However, following exposure to 
exogenous inflammatory mediators, cytokines 
can cause mesangial cells to proliferate and 

the extracellular matrix (ECM) 
to accumulate, leading to glo-
merular sclerosis, renal fibro-
sis and other kidney diseases 
[20, 21]. 

Cell proliferation is achieved 
through the cell cycle. As the 
cell cycle progresses, cells in 
G1-S phase enter G2 phase, 
and mitosis occurs in M pha- 
se. Our study showed that LPS 
significantly promoted the cell 
cycle compared with the con-
trol groups and that treatme- 
nt with different concentrati- 
ons of triptolide caused cell 
cycle arrest at G1 phase [22]. 
This phenomenon indicates 
that LPS can induce human 
mesangial cell proliferation by 
promoting progression of the 
HMC cycle and that triptolide 
can block the cell cycle at G1 
phase, inhibiting proliferation. 
Apoptosis is characterized by 
specific biochemical and mor-
phological changes, and many 
methods have been developed 
to assess apoptosis, such as 
flow cytometric analysis, mor-
phological studies, and bi- 
ochemical assays. In the  
present study, typical morpho-

logical changes were observed following expo-
sure to different concentrations of triptolide. 
We found that triptolide inhibited proliferation 
and induced apoptosis in HMCs. Efficient in- 
hibition of mesangial cell proliferation and 
induction of apoptosis would decrease the  
progression of glomerular sclerosis and  
chronic glomerulonephritis.

Studies have demonstrated that TGF-β1 plays 
an important role in mesangial cell injury and 
glomerular sclerosis [23, 24]. Many growth 
cytokines and signaling pathways are involved 
in the process of mesangial fibrosis. TGF-β1 is 
the most versatile, with roles in cell growth, pro-
liferation, apoptosis, and ECM production [25, 
26]. The underlying molecular mechanisms of 
the beneficial effects of triptolide include su- 
ppression of the TGF-β1/Smad signaling pa- 
thway [27] and inhibition of protein α-SMA 
expression [28]. Numerous studies have con-
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firmed that TGF-β1 has an important role in 
renal fibrosis, predominantly through a Smad 
signal transduction pathway-dependent mech-
anism, but the relationship between the TGF-
β1/Smad signaling pathway and mesangial cell 
apoptosis has not been fully elucidated [29, 
30]. Our findings show that in vitro levels of 
TGF-β1, α-SMA, Smad2, and Smad3, and ph- 
osphorylated Smad2 and Smad3 were signifi-
cantly higher in the LPS group than in the con-
trol group, suggesting that LPS can stimulate 
HMC proliferation. After treatment with trip-
tolide, substantial reductions in α-SMA, TGF-
β1, Samd2, Smad3, and phosphorylated Sm- 
ad2 and Smad3 were observed. Therefore, the 
effects of triptolide against renal fibrosis in 
future clinical studies will be examined to de- 
termine whether this compound can be appli- 
ed as a new method for the treatment of re- 
nal fibrosis [31].

The results of our study revealled that LPS pro-
motes HMC proliferation and induces α-SMA, 
TGF-β1, p-Smad2 and p-Smad3 expression. 
Furthermore, triptolide treatment was shown  
to inhibit HMC proliferation, induce apoptosis, 
and cause cell cycle arrest as well as to reduce 
α-SMA, p-Smad2, p-Smad3 and TGF-β1 mRNA 
and protein levels. Future studies are required 
to investigate the mechanisms underlying the 
effects of triptolide on other signaling pa- 
thways.

Triptolide inhibits proliferation, induces apop- 
tosis and causes cell cycle arrest in HMCs, po- 
ssibly by down-regulating α-SMA and the TGF-
β1/Smad signaling pathway.
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