Apigenin inhibits pressure overload-induced cardiac hypertrophy

Xuan Dong¹,³, Heng Zhou², Yan Zhang², Man Xu²,³, Yarong Hao¹

Departments of ¹Geriatrics, ²Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; ³Cardiovascular Research Institute of Wuhan University, Wuhan, PR China

Received June 29, 2017; Accepted October 10, 2017; Epub April 15, 2018; Published April 30, 2018

Abstract: Apigenin (5,7,4’trihydroxyflavone), a nontoxic citrus flavonoid, possesses comprehensive bioactive properties including anti-oxidation, anti-inflammatory, anticancer and antivirus functions. However, little is known about the role of apigenin on cardiac hypertrophy and fibrosis. The objective of our present study was to investigate the effect of apigenin on cardiac hypertrophy induced by aortic banding (AB) in mice and to elucidate the underlying molecular mechanisms. The extent of cardiac hypertrophy was quantitated by two-dimensional and M-mode echo-cardiography as well as by pathology and gene expression of hypertrophic markers analyses of the heart specimen. Our data demonstrated that apigenin significantly attenuated cardiac hypertrophy induced by AB through inhibiting Akt/GSK3β pathway. Meanwhile, apigenin attenuated fibrosis and collagen synthesis. Taken together, these current findings indicated that apigenin, a feasible safe and natural treatment, has protective potential against cardiac hypertrophy.

Keywords: Apigenin, cardiomyopathy, hypertrophic, cystic fibrosis, glycogen synthase kinase 3, oncogene protein v-akt

Introduction

Cardiac hypertrophy is an adaptive response to a broad-spectrum of pathological stimulus such as mechanical overload, neuroendocrine stress. It is benefit for maintaining cardiac pump function at early stage. However, prolonged stresses are maladaptive and promote compensatory change into congestive heart failure and malignant arrhythmia or even sudden death, which is associated with an increased risk of cardiovascular morbidity and mortality worldwide [1, 2]. Pathological hypertrophy is characterized with myocytes hypertrophy and interstitial fibrosis at morphological level and re-expression of fetal gene program at gene level [3, 4]. A great deal of evidence verified several signaling pathways activation involved in cardiac hypertrophy. By using genetic and cellular models of cardiac hypertrophy it has proved pathological hypertrophy can be prevented or reversed [5]. Therefore, many new drugs aiming for special regulators and targets may become effective approach under this situation.

Apigenin (5,7,4’trihydroxyflavone), a nontoxic citrus flavonoid, abundantly present in common vegetables and fruits have been showed to possess antioxidant, anti-inflammatory, anticancer and antivirus biological properties [6, 7]. Furthermore, it exhibits the function of inhibiting the cell cycle, diminishing oxidative stress, inducing apoptosis in vivo and in vitro. In human prostate cancer cells, apigenin induce cell cycle arrest accompanied with MAPK, PI3K-Akt change [8]. Apigenin inhibits HGF-promoted invasive growth and metastasis through blocking PI3K/Akt pathway in MDA-MB-231 breast cancer cells [9]. Apigenin inhibits HIF-1 and VEGF expression and suppress angiogenesis via PI3K/AKT/p70S6K1 and HDM2/p53 pathways in human ovarian cancer cells [10]. Apigenin induced apoptosis in human lymphoma B cells in vitro. Although it is demonstrated that apigenin could regulate many molecules, very little is known about whether it could regulate cardiac hypertrophy. Thus, in this study, we investigate the effects of apigenin on mice with cardiac hypertrophy by echocardiography, his-
Apigenin inhibits cardiac hypertrophy

Table 1. Inhibits cardiac hypertrophy by apigenin in AB mice

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Vehicle-Sham</th>
<th>Apigenin-Sham</th>
<th>Vehicle-AB</th>
<th>Apigenin-AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>n=10</td>
<td>n=10</td>
<td>n=10</td>
<td>n=10</td>
</tr>
<tr>
<td>BW (g)</td>
<td>29.3±0.3</td>
<td>29.9±0.4</td>
<td>29.9±0.2</td>
<td>30.7±0.4</td>
</tr>
<tr>
<td>HW/BW</td>
<td>4.2±0.10</td>
<td>4.01±0.10</td>
<td>7.58±0.18*</td>
<td>6.33±0.13†</td>
</tr>
<tr>
<td>LW/BW</td>
<td>4.80±0.13</td>
<td>4.55±0.07</td>
<td>4.97±0.10*</td>
<td>4.64±0.10†</td>
</tr>
<tr>
<td>HW/TL</td>
<td>6.77±0.13</td>
<td>6.54±0.12</td>
<td>12.21±0.23*</td>
<td>10.55±0.22†</td>
</tr>
<tr>
<td>LVEDD (mm)</td>
<td>3.66±0.04</td>
<td>3.53±0.05</td>
<td>4.95±0.07*</td>
<td>4.55±0.08†</td>
</tr>
<tr>
<td>LVESD (mm)</td>
<td>2.06±0.04</td>
<td>2.12±0.04</td>
<td>3.76±0.08*</td>
<td>3.16±0.09†</td>
</tr>
<tr>
<td>IVSD (mm)</td>
<td>0.70±0.011</td>
<td>0.69±0.007</td>
<td>0.82±0.009*</td>
<td>0.79±0.005†</td>
</tr>
<tr>
<td>LVPWD</td>
<td>0.68±0.010</td>
<td>0.70±0.008</td>
<td>0.81±0.012*</td>
<td>0.79±0.017*</td>
</tr>
<tr>
<td>FS (%)</td>
<td>42±0.4</td>
<td>41±0.7</td>
<td>24±0.6*</td>
<td>32±0.9†</td>
</tr>
</tbody>
</table>

BW, body weight; HW, heart weight; LW, lung weight; TL, tibia length; LVEDD, left ventricular end-diastolic diameter; LVESD, left ventricular end-systolic diameter; IVSD, left ventricular septum, diastolic; LVPWD, left ventricular posterior wall, diastolic; FS, fractional shortening. All values are mean ± SEM. *P<0.05 vs Vehicle-Sham, †P<0.01 vs Vehicle-Sham, ‡P<0.05 vs Vehicle-AB.

Echocardiography and hemodynamic detection

The echocardiographic examination was performed by Mylab30CV (ESAOTE S.P.A) with 10 MHz linear array transducer after 8 weeks. Left ventricular end-diastolic diameter (LVEDD) and left ventricular end-systolic diameter (LVESD) were measured from the LV M-mode tracing with a sweep speed of 50 mm/s at the mid-papillary muscle level. The indicators were assessed as measures of cardiac function. The 1.4F catheter (SPR-839, Millar Instruments, Houston, TX, USA) was inserted from mice right carotid artery into the left ventricle and acquired the invasive hemodynamic indexes.

Histological analysis

The hearts were excised and fixed in 10% buffered formalin and embedded in paraffin. Hearts were cut transversely to visualize the left and right ventricles. Several sections of heart (5 um thick) were stained with hematoxylin and eosin (HE) for measuring myocyte cross-sectional area or Picrosirius red (PSR) for observing collagen deposition. The area of single myocytes and collagen percent (the area of collagen/total area of tissue) was calculated with an Image quantitative digital analysis system (Image Pro-plus 5.0 software). The outline of 100 cardiomyocytes was traced in each group.

Quantitative real-time PCR

The mRNA levels of hypertrophic and fibrotic markers were detected by real-time PCR. Total RNA of the hearts tissue was extracted by Trizol Reagent (Roche), and synthesized cDNA using oligo(dT) primer with the cDNA Synthesis Kit (Roche). Relative quantitation by real-time PCR utilized SYBR Green PCR Master Mix (Roche) to detect products of PCR in real time with the
Apigenin inhibits cardiac hypertrophy

LightCycle480 Software (Roche). The GAPDH RNA was amplified as a reference standard. Reactions were prepared in triplicate and heated to 95°C for 5 s, 60°C for 10 s, and 72°C for 20 s.

Western blotting

Cardiac tissues were lysed in RIPA lysis buffer containing protease inhibitors. Cell lysates were matched for protein concentration and equal amounts of total protein (50 μg) was separated in SDS/PAGE and transferred to polyvinylidene difluoride membranes (Millipore). The membranes subsequently were blocked in 5% nonfat milk and probed with corresponding primary antibodies overnight. After incubation with secondary fluorescent-labeled secondary antibodies IRdye 800, the blots including phosphoprotein and total protein were scanned and quantified by odyssey infrared imaging system (Li-Cor Biosciences). Every protein expression levels should be normalized to GAPDH protein. Three independent experiments were conducted at least.

Statistical analysis

All results are presented as mean ± standard error of the mean (SEM). Statistical analyses of the data were carried out with two-way ANOVA followed by unpaired Student’s t-test. The possibility value \(P<0.05 \) has significant differences.

Results

Apigenin inhibited cardiac hypertrophy and improved heart function

To investigate the effect of apigenin on pressure-overload heart, we performed aortic banding (AB) surgery on 8-10 weeks old C57BL/6 mice to induce cardiac hypertrophy. Cardiac...
Apigenin inhibits cardiac hypertrophy

Table 1. Improved cardiac function by apigenin in AB mice

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Vehicle-Sham</th>
<th>Apigenin-Sham</th>
<th>Vehicle-AB</th>
<th>Apigenin-AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>n=6</td>
<td>n=6</td>
<td>n=6</td>
<td>n=6</td>
</tr>
<tr>
<td>HR (beats/min)</td>
<td>462±9</td>
<td>458±21</td>
<td>487±26</td>
<td>478±19</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>101±2</td>
<td>106±2</td>
<td>142±5°</td>
<td>162±3°</td>
</tr>
<tr>
<td>dPdt max (mmHg/sec)</td>
<td>9285±351</td>
<td>9957±453</td>
<td>6618±279^*</td>
<td>8406±342^*</td>
</tr>
<tr>
<td>dPdt min (mmHg/sec)</td>
<td>-8526±522</td>
<td>-8706±647</td>
<td>-5376±443^*</td>
<td>-8265±583^*</td>
</tr>
<tr>
<td>EF (%)</td>
<td>68±3</td>
<td>58±2</td>
<td>25±1^*</td>
<td>37±3^*</td>
</tr>
</tbody>
</table>

HR, heart rate; SBP, End-systolic Pressure; EF, Ejection Fraction (%). All values are mean ± SEM. ^*P<0.05 vs Vehicle-Sham, ^†P<0.01 vs Vehicle-Sham, ^*P<0.05 vs Vehicle-AB.

Apigenin attenuated

cardiac fibrosis

Besides cells hypertrophy, fibrosis is another characteristic of pathological cardiac hypertrophy. To further investigate whether apigenin attenuated fibrosis apart from hypertrophy, we examined LV collagen volume percent. The increase in LV collagen volume in the vehicle-AB mice by PSR staining was notably attenuated after administration of apigenin (Figure 3A, 3B). Analysis of mRNA expression levels of fibrosis-related mediator including TGF-β1, TGF-β2, CTGF, Collagen Iα, Collagen III and fibronectin revealed that the increases responses in vehicle-AB group were inhibited by apigenin administration (Figure 3C).

Discussion

Although pathological cardiac hypertrophy is initially an adaptive response to pathological stimulus, sustained hypertrophy is deleterious and long-term decompensation may lead to congestive heart failure, malignant arrhythmia or even sudden death, which is associated with an increased risk of cardiovascular morbidity and mortality [12-14]. It was reported that pathological hypertrophy can be prevented in models of cardiac hypertrophy recently [15, 16]. But there is no optimal therapeutic measure at present. Therefore, it is necessary to find the key drug as special regulators and targets for the effective treatment of pathological hypertrophy. In the present study, we for the first time found that apigenin not only preventing the progress of cardiac hypertrophy and fibrosis, but also attenuating the progression of LV dysfunction in response to pressure overload. And we further demonstrate that the protective role of apigenin on cardiac hypertrophy was mediated by reducing the expression of Akt/GSK3β signalling pathway.
Apigenin (5,7,4′-trihydroxyflavone), a nontoxic citrus flavonoid, has been shown to possess antioxidant, anti-inflammatory, anticancer and antivirus biological properties [6, 7]. It is also reported that apigenin induced apoptosis in human lymphoma B cells in vitro. And apigenin could induce cell cycle arrest accompanied with the change of MAPK, PI3K/Akt in human prostate cancer cells [8]. However, the effects of apigenin on cardiac hypertrophy and the related molecular mechanisms are still unclear. Thus, in this study, we investigate the effects of apigenin on mice with cardiac hypertrophy by echocardiography, histological and molecular biologic detect including ANP, BNP, Myh7, Acat1, which are specially up-regulated during cardiac hypertrophy. We found that apigenin not only attenuated cardiac hypertrophy and fibrosis, but also improved cardiac performance. These novel findings suggest that apigenin is an effective regulator in protecting against cardiac hypertrophy induced by pressure overload.

The molecular mechanisms through which apigenin regulated the cardiac hypertrophic response still unclear. Plenty signaling mechanism leading to cardiac hypertrophy and the interaction between them have been researched [1, 4]. The activation of Akt/GSK3β pathway in cardiac hypertrophy is well known [17]. Targeted overexpression of activated PI3-kinase in the heart increased the organ size, while expression of a dominant-negative mutant has the opposite outcome. PI3K activation inducing cardiac hypertrophy is associated with its downstream Akt, and the activation of Akt lead to cardiac hypertrophy and heart failure [18]. Two important downstream targets are regularly mentioned, glycogen synthase kinase 3β (GSK-3β) and mTOR. GSK3β, which is a negative regulator of the cardiac hypertrophy, has been revealed disrupts cardiomyocyte hypertrophy [19]. Furthermore, apigenin inhibits HGF-promoted invasive growth and metastasis through blocking PI3K/Akt pathway in MDA-MB-231 breast cancer cells [9]. Apigenin inhibits HIF-1 and VEGF expression and suppress angiogenesis via PI3K/AKT/p70S6K1 and HDAC2/p53 pathways in human ovarian cancer cells [10]. Therefore, we examined the effects of apigenin on Akt/GSK3β signaling pathway. The present study showed that the phosphorylation levels of Akt and GSK3β increased obviously under the pressure overload stimuli, and apigenin markedly reduced the phosphorylation of Akt and GSK3β in banding mice. These findings

Figure 2. Apigenin inhibits Akt/GSK3β signaling induced by pressure-overload. A: Representative blots of Akt, GSK3β phosphorylation and their total protein expression at indicated group’s mice. B: Quantification of Akt, GSK3β protein expression in the heart of mice with 8 weeks AB or sham operation. The results were reproducible in three separate experiments as mean ± SEM. *P<0.01 was obtained for vehicle-sham group. #P<0.01 was obtained for vehicle-AB group.
Apigenin inhibits cardiac hypertrophy

Figure 3. Apigenin blocks collagen synthesis induced by pressure-overload. A: PSR staining on histological sections of the LV was performed on each group 8 weeks after AB. B: Fibrotic areas from histological sections were quantified using an image-analyzing system (n=6). C: Apigenin was shown to inhibit the mRNA expression of TGF-β1, TGF-β2, CTGF, Collagen Iα, Collagen III and Fibronectin in the myocardium obtained from indicated groups (n=6). The results were reproducible in three separate experiments. *P<0.01 was obtained for vehicle-sham group. #P<0.01 was obtained for vehicle-AB group.

Conclusions

In summary, our present study demonstrated for the first time that apigenin was effective in inhibiting cardiac hypertrophy induced by pressure overload and apigenin inhibits AB-induced cardiac hypertrophy in mice through blocking Akt/GSK3β signaling pathway. Our finding provided experimental evidence that apigenin may have a promising potential in effective therapy of cardiac hypertrophy and heart failure.

Disclosures of conflict of interest

None.

Address correspondence to: Yarong Hao, Department of Geriatrics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, PR China.
Apigenin inhibits cardiac hypertrophy

References

