Abstract: Long non-coding RNA (lncRNA) SPRY4-IT1 has been reported to be aberrantly expressed in various cancers and correlated with progression. We conducted a meta-analysis to further investigate its prognostic potential in malignant tumors. Relevant literature was searched in several electronic databases using combinations of keywords relating to SPRY4-IT1 and cancer. The pooled hazard ratios (HRs) or odds ratios (OR) with a 95% confidence interval (95% CI) were used to evaluate its prognostic value. Quality assessment of the included studies was performed by the Newcastle-Ottawa Scale. 12 studies with a total of 1261 participants were included in the current meta-analysis. The results revealed a significant association between elevated SPRY4-IT1 expression with poor overall survival (OS) in 10 types of cancers (HR=2.26, 95% CI=1.44-3.54, P=0.0004). Additionally, elevated SPRY4-IT1 expression was also correlated with lymph node metastasis (LNM) (OR=2.57, 95% CI=1.18-5.64, P=0.02) and tumor-node-metastasis (TNM) stage (OR=2.61, 95% CI=1.15-5.89, P=0.02). In the subgroup analysis, we found that increased SPRY4-IT1 expression was an unfavorable prognostic factor for patient OS in digestive system cancers (OR=1.92, 95% CI=1.12-3.30, P=0.02). This meta-analysis indicated that elevated SPRY4-IT1 expression may serve as a potential novel biomarker for LNM, TNM stage and OS in different types of cancer.

Keywords: Long non-coding RNA, SPRY4-IT1, lymph node metastasis, TNM stage, overall survival

Introduction

Tumors are a serious threat to human health because tumor cells proliferate at an abnormal rate [1] and readily metastasize [2, 3]. A total of 14.1 million cancer cases and 8.2 million cancer deaths were reported to occur in 2012, and the burden of cancer has gradually transferred to economically developing countries [4]. Although several treatments are available for tumor therapy, including surgery, chemotherapy and radiation therapy, patient prognosis is still not ideal, especially for those with advanced stage cancers [5-7]. Therefore, to diagnose tumors earlier, more effective molecular markers related to the development and metastases of tumors are needed.

Long non-coding RNAs (lncRNAs; >200 nucleotides in length) are RNA molecules with a non-protein coding capacity that are transcribed by RNA polymerase II [8, 9]. Okazakib [10] identified the first known lncRNA as a mouse DNA transcription product. lncRNAs have a wide range of biological functions, including cancer progression and metastasis, transcriptional and post-transcriptional regulation, regulation of subcellular localization, and production of endogenous small interfering RNA [11-13].

lncRNA SPRY4 intronic transcript 1 (SPRY4-IT1) was first reported as highly expressed in melanoma [14] and has extensive regulatory functions. Altering the expression of SPRY4-IT1 in vitro had a significant impact on tumor cell proliferation, metastasis, and apoptosis [15-17]. However, most studies examining the implications of SPRY4-IT1 expression were limited by their small sample size. Therefore, we conducted this quantitative meta-analysis to explore the prognostic value of lncRNA SPRY4-IT1 in different types of cancer.
Materials and methods

Search strategy

Eligible studies were identified in PubMed, Cochrane Library, Medline, Web of Science, and CNKI databases from 2011 to 2017. The search strategy was (“sprouty RTK signaling antagonist 4 intronic transcript 1” or “SPRY4-IT1” or “SPRY4 intronic transcript 1”) and (“outcome” or “prognos*” or “surviv*” or “clinicopathologic feature” or “os”). Reference lists of retrieved articles were searched manually to increase the sensitivity of the search strategy.

Inclusion and exclusion criteria

Inclusion criteria were as follows: (1) studies investigating the expression levels of SPRY4-IT1 in human cancers; (2) patients grouped according to SPRY4-IT1 expression level; (3) correlations reported between SPRY4-IT1 expression and clinicopathological feature or prognosis; and (4) availability of a hazard ratio (HR), odds ratio (OR) and 95% confidence interval (CI), or data that could be used to calculate these values. Exclusion criteria were as follows: (1) reviews, comments, letters, case reports, and editorials; (2) lack of usable data for further analysis; and (3) non-human research, non-English papers, and duplicate publications.

Data extraction and quality control

Two authors independently extracted the critical data from eligible papers according to the inclusion and exclusion criteria. The following information was recorded for each eligible study: first author name, publication year, country, tumor type, sample size, tumor-node-metastasis (TNM) stage, number of high SPRY4-IT1 expression and low expression groups, number of patients with lymph node metastasis (LNM) in each group, method of SPRY4-IT1 testing, Newcastle-Ottawa Scale (NOS) score, HR, OR, 95% CI, and outcome. Some HRs were obtained directly from the papers, but others had to be collected from Kaplan-Meier survival curves by Engauge Digitizer version 4.1, as previously described [18]. If the data had been analyzed by both univariate and multivariate methods, the latter was preferred.

All eligible literature was assessed by NOS for quality control [19]. Any disagreement was resolved by discussion with a third author.

Statistical analysis

All extracted data were analyzed using Review Manager Version 5.3 (Revman, the Cochrane Collaboration, Oxford, UK) and Stata 12.0 Software. The chi-square Q test and I² statistic were used to assess the heterogeneity of pooled HRs. Pooled HRs and 95% CIs were used to evaluate the effect of SPRY4-IT1 expression levels on clinical prognosis. A HR of >1 indicated a worse prognosis in patients with evaluated SPRY4-IT1 expression. Statistical significance was considered when the 95% CI did not include 1 and P<0.05. ORs were used to clarify a link between evaluated SPRY4-IT1 expression and clinicopathological features. The random-effects model was applied to calculate the pooled HR and 95% CI when heterogeneity was significant (P<0.1 and I²>50), otherwise, the fixed-effects model was used. A funnel plot based on the Begg’s test was conducted to estimate the potential publication bias [20]. A sensitivity analysis was conducted to test whether the removal of a single study influenced the overall outcome.

Results

The electronic search retrieved a total of 41 references, of which 26 were excluded after careful screening of the titles and abstracts for irrelevant and duplicate studies. A further 3 studies did not comply with the inclusion criteria after a more detailed inspection. Therefore, 12 published articles were enrolled in the current meta-analysis [14, 21-31] (Figure 1) with an accrual period between 2014 and 2017, and a
### Table 1. Characteristics of studies in this meta-analysis

<table>
<thead>
<tr>
<th>First Author</th>
<th>Year</th>
<th>Country</th>
<th>Tumor type</th>
<th>Sample size (n)</th>
<th>SPRY4-IT1 expression</th>
<th>TNM stage (I-II) VS (III-IV)</th>
<th>Outcome</th>
<th>NOS</th>
<th>Detection method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>2014</td>
<td>China</td>
<td>NSCLC</td>
<td>121</td>
<td>High expression</td>
<td>Low expression</td>
<td>OS</td>
<td>8</td>
<td>qRT-PCR</td>
</tr>
<tr>
<td>Liu</td>
<td>2016</td>
<td>China</td>
<td>Melanoma</td>
<td>70</td>
<td>NR</td>
<td>NR</td>
<td>OS</td>
<td>7</td>
<td>qRT-PCR</td>
</tr>
<tr>
<td>Zhang</td>
<td>2014</td>
<td>China</td>
<td>ccRCC</td>
<td>98</td>
<td>NR</td>
<td>NR</td>
<td>OS</td>
<td>8</td>
<td>qRT-PCR</td>
</tr>
<tr>
<td>Zhao</td>
<td>2015</td>
<td>China</td>
<td>UCB</td>
<td>68</td>
<td>NR</td>
<td>NR</td>
<td>OS</td>
<td>9</td>
<td>qRT-PCR</td>
</tr>
<tr>
<td>Liu</td>
<td>2017</td>
<td>China</td>
<td>UCB</td>
<td>60</td>
<td>NR</td>
<td>NR</td>
<td>OS</td>
<td>9</td>
<td>qRT-PCR</td>
</tr>
<tr>
<td>Xie</td>
<td>2014</td>
<td>China</td>
<td>ESCC</td>
<td>92</td>
<td>NR</td>
<td>NR</td>
<td>OS</td>
<td>8</td>
<td>qRT-PCR</td>
</tr>
<tr>
<td>Zhou</td>
<td>2016</td>
<td>China</td>
<td>Glioma</td>
<td>163</td>
<td>NR</td>
<td>NR</td>
<td>OS</td>
<td>9</td>
<td>qRT-PCR</td>
</tr>
<tr>
<td>Peng</td>
<td>2015</td>
<td>China</td>
<td>GC</td>
<td>175</td>
<td>NR</td>
<td>NR</td>
<td>OS</td>
<td>8</td>
<td>qRT-PCR</td>
</tr>
<tr>
<td>Cao1</td>
<td>2016</td>
<td>China</td>
<td>CRC</td>
<td>84</td>
<td>NR</td>
<td>NR</td>
<td>OS</td>
<td>8</td>
<td>qRT-PCR</td>
</tr>
<tr>
<td>Tan</td>
<td>2017</td>
<td>China</td>
<td>CRC</td>
<td>106</td>
<td>NR</td>
<td>NR</td>
<td>OS</td>
<td>9</td>
<td>qRT-PCR</td>
</tr>
<tr>
<td>Cao2</td>
<td>2016</td>
<td>China</td>
<td>CC</td>
<td>100</td>
<td>NR</td>
<td>NR</td>
<td>OS</td>
<td>7</td>
<td>qRT-PCR</td>
</tr>
<tr>
<td>Li</td>
<td>2017</td>
<td>China</td>
<td>OC</td>
<td>124</td>
<td>NR</td>
<td>NR</td>
<td>OS</td>
<td>7</td>
<td>qRT-PCR</td>
</tr>
</tbody>
</table>

NSCLC non-samll cell lung cancer, ccRCC clear cell renal cell carcinoma, UCB urothelial carcinoma of the bladder, ESCC esophageal squamous cell carcinoma, GC Gastric cancer, CRC colorectal cancer, CC cervical cancer, OC ovarian cancer, NR not reported, TNM tumor-node-metastasis, NOS Newcastle-Ottawa Scale, qRT-PCR quantitative real-time PCR.
A meta-analysis on long non-coding RNA SPRY4-IT1

Range of sample sizes of 60-175 (mean, 105). All included studies came from China and were assessed to be of high quality by the NOS. A total of seven different types of cancers were evaluated in this meta-analysis, including 1 non-small cell lung cancer (NSCLC), 1 melanoma, 1 clear cell renal cell carcinoma (ccRCC), 2 urothelial carcinoma of the bladder (UCB), 1 esophageal squamous cell carcinoma (ESCC), 1 glioma, and 1 gastric cancer (GC), 1 colorectal cancer (CRC), 1 cervical cancer (CC) and 1 ovarian cancer (OC). Based on the different expression levels of SPRY4-IT1 in each study, all participants were divided into two groups: high and low expression. All cancerous specimens had been well preserved before RNA extraction, and all diagnoses of clinicopathological features were based on pathology. The expression levels of SPRY4-IT1 had all been measured by quantitative real-time PCR. The main characteristics of the included studies are shown in Table 1.

**Association of SPRY4-IT1 expression with TNM stage**

A total of 7 studies including 817 patients reported the relationship between SPRY4-IT1 expression levels and TNM stage. The random-effects model was adopted because of the significant heterogeneity ($I^2=86\%$, $P<0.00001$). The result showed that elevated SPRY4-IT1 expression was associated with higher TNM stage with a pooled OR of 2.61 (95% CI=1.15-5.89, $P=0.02$) (Figure 2). Therefore, compared with the low SPRY4-IT1 expression group, the high SPRY4-IT1 expression group was at higher risk of developing to an advanced tumor stage.
A meta-analysis on long non-coding RNA SPRY4-IT1

Association of SPRY4-IT1 expression with LNM

Nine studies including a total of 944 patients reported patients with LNM based on different SPRY4-IT1 expression levels. Significant heterogeneity was observed ($I^2=84\%, P<0.00001$), so the random-effects model was adopted. The odds ratios, expressed as high SPRY4-IT1 expression group versus low SPRY4-IT1 expression group, was 2.57 (95% CI 1.18-5.64, $P=0.02$) (Figure 3). The high SPRY4-IT1 expression group had a significantly elevated LNM rate. This revealed that patients with high SPRY4-IT1 expression were more likely to develop LNM.

Association of SPRY4-IT1 expression with OS

Eleven studies including 1201 patients assessed the effect of up-regulated expression of SPRY4-IT1 on OS. The result revealed that increased SPRY4-IT1 expression predicted a poor outcome for OS in seven types of cancer (HR=2.26, 95% CI 1.44-3.54, $P=0.0004$) with significant heterogeneity ($I^2=77\%, P<0.00001$) (Figure 4). Additionally, subgroup analysis was also conducted based on cancer type (digestive system cancers or others). A significant relevance was found between elevated SPRY4-IT1 expression and poor OS in digestive system cancers (HR=1.92, 95% CI 1.12-3.30, $P=0.02$) (Figure 5). Therefore, patients with elevated SPRY4-IT1 expression were more prone to poor OS in different kinds of cancer.

Publication bias and sensitivity analysis

To assess publication bias in this meta-analysis, the included studies were conducted using funnel plots and Begg's test. As shown in Figure 6, the shape of the funnel plot exhibited no significant asymmetry for OS. Meanwhile, a sensitivity analysis was also conducted to determine whether the removal of a single study influenced the overall outcome. The result suggested that the pooled HR for deregulated SPRY4-IT1 associated with OS was not significantly affected by the exclusion of any of the studies and indicated that our analysis was relatively stable and reliable (Figure 7).

Discussion

Early studies indicated that IncRNAs were considered to be simply transcriptional ‘noise’ or cloning artifacts [32]. However, increasing evidence suggested that IncRNAs have a vital role in tumor progression and development [33] and can be considered as biomarkers and prognosis factors [34]. For example, HOX transcript antisense RNA (HOTAIR) and metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) have already been used to predict prognosis in different types of cancer [35, 36].

LncRNA SPRY4-IT1 (GenBank Accession ID AK024556) was initially identified in adipose tissue and transcribed from the second intron of SPRY4 gene, which is a 703-bp molecule that maps to chromosome 5q31.3. Khatan et al. [37] found that, compared with melanocytes, SPRY4-IT1 is overexpressed in melanoma cells and SPRY4-IT1 transcripts are processed in the nucleus prior to transport to the cytoplasm. Liu et al. [14] also observed that SPRY4-IT1 was increased in the plasma of melanoma patients compared with that in healthy controls, which
A meta-analysis on long non-coding RNA SPRY4-IT1 was used as an independent prognosis factor in melanoma, as well as esophageal squamous cell carcinoma [38-40]. The dysregulated expression of SPRY4-IT1 affected cell proliferation, metastasis, invasion, and apoptosis by various mechanisms in different kinds of cancer including gallbladder cancer, hepatocellular carcinoma, osteosarcoma, prostate cancer and melanoma, and so on [15, 41-44]. Mazar et al. [44] found that on one hand, the loss of lipin 2 most likely led to destabilize SPRY4-IT1 expression in human melanoma cells. On the other hand, knockdown of the SPRY4-IT1 gene increased both lipin 2 mRNA and protein expression. But interestingly, the transcriptional and functional independence of SPRY4-IT1
A meta-analysis on long non-coding RNA SPRY4-IT1

and its host gene SPRY4, and the expression of neither SPRY4-IT1 nor lipin 2 was influenced when they pulled down the SPRY4 gene. Sun et al. [21] indicated that EZH2-mediated epigenetic suppression of SPRY4-IT1 promotes NSCLC cell proliferation and metastasis by affecting the epithelial-mesenchymal transition. Shi et al. [45] found that ZNF703 showed the most substantial expression change in response to SPRY4-IT1 knockdown in breast cancer cells. In addition, the MDA-MB-231 and MDA-MB-435S cell lines showed high SPRY4-IT1 expression, whereas the MCF-7 cell line showed low SPRY4-IT1 expression compared with normal breast epithelial cells (MCF-10A), which was also apparent in prostate cancer [43]. Thus, we needed more studies to explore the mechanism of SPRY4-IT1 in tumors.

Some limitations should be taken into consideration in our study. First, we only included twelve eligible articles, which might lead to publication bias. Additional eligible studies should therefore be included. Second, all patients were from China, which might have generated selection bias and limit the broader applicability of our results. Third, the cut-off value used to distinguish high and low SPRY4-IT1 expression varied in different studies and potentially introduced further bias. Fourth, most of the included articles reported positive results because articles with negative findings are not typically published. Fifth, several HRs were calculated by reconstructing survival curves because some articles did not include available HRs. Sixth, two studies used risk ratio (RR) as index for OS, which were also included in analysis of the pooled HR for OS. Compared with HR, RR only considered the differences of the end point events, but ignored the time to the end point events and censored data. Finally, our results were likely to overstate the predictive value of SPRY4-IT1 in the prognosis of patients with cancer.

This meta-analysis of twelve studies representing a total of 1261 patients identified a significant association between SPRY4-IT1 expression levels and LNM, TNM stage, and OS in different types of cancer. These results indicate that elevated SPRY4-IT1 expression is closely linked to LNM, TNM stage and poor OS. Therefore, IncRNA SPRY4-IT1 has the potential to be used as a novel, reliable biomarker to predict the clinical outcome of cancer patients.

Acknowledgements

The work was funded by Anhui science and technology research projects (Grant no. 16-04a0802072).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Baolong Wang, Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, 17 Lujiang Road, Hefei 230001, Anhui, China. Tel: +86 1350-5602721; E-mail: wbl196555@163.com

References


A meta-analysis on long non-coding RNA SPRY4-IT1

S, Mathers C, Rebelo M, Parkin DM, Forman D  
and Bray F. Cancer incidence and mortality  
worldwide: sources, methods and major pat  
terns in GLOBOCAN 2012. Int J Cancer 2015;  
136: E359-386.

Lee JW. Clinical outcomes in patients treated  
with radiotherapy after surgery for cervical  

[6] Barton MB, Frommer M and Shafiq J. Role of  
radiotherapy in cancer control in low-income  
and middle-income countries. Lancet Oncol  
2006; 7: 584-595.

[7] Cree IA, Kurbacher CM, Lamont A, Hindley AC,  
Love S; TCA Ovarian Cancer Trial Group. A  
prospective randomized controlled trial of tumour  
chemosensitivity assay directed chemotherapy  
versus physician’s choice in patients with re- 
current platinum-resistant ovarian cancer. An- 

GA. Long non-coding RNAs and cancer: a new  
frontier of translational research? Oncogene  
2012; 31: 4577-4587.

[9] Gutschner T and Diederichs S. The hallmarks  
of cancer: a long non-coding RNA point of view.  

Bono H, Kondo S, Naka Ido K, Osato N, Saito R,  
Suzuki H, Yamanaka I, Kiyosawa H, Yagi K, To- 
maru Y, Hasegawa Y, Nakami A, Schonbach C,  
Gojobori T, Baldarelli R, Hill DP, Bult C, Hume  
DA, Quackenbush J, Schriml LM, Kanapin A, Matsuda H, Batalov S, Beisel KW, Blake JA,  
Bradt D, Bruvic V, Chothia C, Corbani LE, Cous- 
Ins S, Dalla E, Dragani TA, Fletcher CF, Forrest  
A, Frazer KS, Gaasterland T, Gariboldi M, Gissi  
C, Godzik A, Gough J, Grimmond S, Gustinich S,  
Hirokawa N, Jackson IJ, Jarvis ED, Kanai A,  
Kawai H, Kawasawa Y, Kidzierski RM, King  
BL, Konagaya A, Kurckhin IV, Lee Y, Lenhard  
B, Lyons PA, Maglott DR, Malik S, Marchionni  
L, McKenzie L, Miki H, Nagashima T, Numata  
K, Okido T, Pavan WJ, Pertea G, Pesole G,  
Petrovsky N, Pillai R, Pontius JU, Qi D, Ramach- 
andran S, Ravasi T, Reed JC, Reed DJ, Reid J,  
Ring BZ, Ringwald M, Sandelin A, Schneider C,  
Semple CA, Seto M, Shimada K, Sultana R,  
Takenaka Y, Taylor MS, Teasdale RD, Tomita M,  
Verardo R, Wagner L, Wahlestedt C, Wang Y,  
Watanabe Y, Wells C, Wilming LG, Wynshaw- 
Borl A, Yangishawa M, Yang I, Yang L, Yuan Z,  
Zavolan M, Zhu Y, Zimmer A, Carninci P, Hay-  
atsu N, Hirozane-Kishikawa T, Konno H, Naka- 
mura M, Sakazume N, Sato K, Shiraik T, Waki  
K, Kawai J, Aizawa K, Arakawa T, Fukuda S,  
Hara A, Hashizume W, Imotani K, Ishii Y, Itoh  
M, Kagawa O, Miyazaki A, Sakai K, Sasaki D,  
Shibata K, Shinagawa A, Yasumishi A, Yoshino  
M, Waterston R, Lander ES, Rogers J, Birney E,  
Hayashizaki Y; FANTOM Consortium; RIKEN  
Genome Exploration Research Group Phase I  
& II Team. Analysis of the mouse transcriptome  
based on functional annotation of 60,770 full- 

non-coding RNAs: a new frontier in the study of  
human diseases. Cancer Lett 2013; 339: 159- 
166.

[12] Geisler S and Coller J. RNA in unexpected plac- 
es: long non-coding RNA functions in diverse  

[13] Orom UA and Shiekhattar R. Long noncoding  
RNAs usher in a new era in the biology of en- 

HZ and Lu ZG. Clinical significance of long non- 
coding RNA SPRY4-IT1 in melanoma patients.  

F. Long non-coding RNA SPRY4-IT1 promotes  
gallbladder carcinoma progression. Oncotarget  
2017; 8: 3104-3110.

[16] Jing W, Gao S, Zhu M, Luo P, Jing X, Chai H and  
Tu J. Potential diagnostic value of IncRNA  
SPRY4-IT1 in hepatocellular carcinoma. Oncol  

[17] Liu H, Lv Z and Guo E. Knockdown of long non- 
coding RNA SPRY4-IT1 suppresses glioma cell  
proliferation, metastasis and epithelial-mesen- 
chymal transition. Int J Clin Exp Pathol 2015; 8:  
9140-9146.

[18] Tierney JF, Stewart LA, Ghersi D, Burdett S and  
Sydes MR. Practical methods for incorporating  
summary time-to-event data into meta-analy- 
sis. Trials 2007; 8: 16.

[19] Stang A. Critical evaluation of the Newcastle- 
Ottawa scale for the assessment of the quality  
of nonrandomized studies in meta-analyses.  

[20] Sterne JA and Egger M. Funnel plots for detect- 
ing bias in meta-analysis: guidelines on choice  

[21] Sun M, Liu XH, Lu KH, Nie FQ, Xia R, Kong R,  
Yang JS, Xu TP, Liu YW, Zou YF, Lu BB, Yin R,  
Zhang EB, Xu L, De W and Wang ZX. EZH2- 
mediated epigenetic suppression of long non- 
coding RNA SPRY4-IT1 in hepatocellular carcino- 

[22] Zhang HM, Yang FQ, Yan Y, Che JP and Zheng  
JH. High expression of long non-coding RNA  
SPRY4-IT1 predicts poor prognosis of clear cell  
7: 5801-5809.
A meta-analysis on long non-coding RNA SPRY4-IT1


