Comparing two methods of orthodontics space closure: a randomized clinical trial

Shanbao Fang1, Yu Zhong2, Meile Li1, Junjie Luo3, Nisha Khadka1, Chunmiao Jiang1, Jun Wang1, Xi Du1

1Department of Orthodontics, West China Stomatology Hospital of Sichuan University, State Key Laboratory of Oral Diseases (Sichuan University), Chengdu, Sichuan, PR China; 2Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, PR China; 3Department of Orthodontics, First Hospital, Ningbo, Zhejiang, PR China

Received September 8, 2016; Accepted August 15, 2017; Epub October 15, 2017; Published October 30, 2017

Abstract: The objective of this study was to compare the differences in bilaterally asymmetrical space closure and the rate of space closure in the upper arch between NiTi coil springs and the elastomeric module in adolescent patients. Forty-two adolescent patients with bilateral first premolar extractions in the maxillary arch were enrolled and randomly distributed into the NiTi coil spring group and the elastomeric module group. After aligning and leveling with 0.019×0.025-inch stainless steel archwire, the same initial force was applied in the two groups. Dental casts were made at the beginning of space closure (T1) and the end of retraction (T2). The amount of space closure was measured with a digital caliper. The mean rate of space closure in the NiTi spring was significantly higher than the elastomeric module. However, bilateral asymmetric space closure with the elastomeric module was more significant than the NiTi spring. To conclude, our research suggested that the NiTi coil spring might be a more efficient force delivery appliance in orthodontic space closure.

Keywords: Space closure, asymmetry, NiTi coil spring, elastomeric module

Introduction

Sliding mechanics is recommended as highly efficient for space closure in the pre-adjusted straight wire orthodontic system [1]. Various force delivery systems, such as the NiTi coil spring, elastomeric chain, elastomeric module and closing loop, have been applied in orthodontic space closure [2-5].

Among the force delivery systems, the NiTi coil spring and elastomeric module are most widely used. In previous studies, the assessment of the efficiency of these two methods in space closure has been controversial. Dixon V et al. [4] and Barlow et al. [6] compared the NiTi coil spring and elastic module in space closure, and the results showed that the NiTi coil spring was more efficient than the elastomeric module. In contrast, Nightingale et al. [7] and Samuels et al. [8] found that there was no difference in the space closure rate between these two force delivery systems. In previous studies, confounding factors related to tooth movement were not strictly controlled. For example, the magnitudes of the forces applied were variable. The second limitation of previous studies was that adult and adolescent subjects were usually mixed together into the same group, whereas age should be one of the main factors that affects the rate of space closure. Third, previous studies hardly consider the difference between space closure in the upper arch and the lower arch. Finally, the occlusal interferenc es were not examined either. These confounding factors could possibly affect the results.

In addition, it is common that the rate of space closure between the left and right sides of the dentition is asymmetric in orthodontic practice. In most previous studies, the study models of space closure had a split-mouth design, without considering the bilateral asymmetry of the subjects. Nevertheless, pathologic asymmetry in the normal facial features and craniofacial morphology is relatively common [9-11]. Therefore, the results of previous studies on bilateral space closure might be affected by the
Comparing two methods of orthodontic space closure

Figure 1. Schematic of space closure with NCS and EM (NCS, NiTi coil spring; EM, elastomeric module).

Figure 2. Flow diagram of subjects through the study.

Materials and methods

Sample size calculation

According to the power analysis of the previous studies, a total of 36 subjects (18 subjects per group) were recruited to detect a clinically meaningful difference of 0.5 mm/month and a standard deviation of 0.5 mm/month in space closure between the two force delivery systems with a power of 80% [3]. In total, 42 adolescent patients were recruited to compensate for potential dropouts.

Subjects

Forty-two subjects treated in the Department of Orthodontics, West China Hospital of Stomatology, Sichuan University from 2014 to 2015 were enrolled according to the following criteria: (1) Adolescent patients with permanent dentition (aged from 12 years old to 16 years old); (2) Angle’s Class II division 1 malocclusion; (3) Mild crowding (crowding <4 mm); (4) Treatment plan included bilateral maxillary first premolar extraction. Patients were excluded if they had complex systemic disease, had hypodontia or a midline shift in the maxillary arch, failed to attend appointments on time, used extraoral anchorage or class II elastic retraction to correct the molar relationship, or experienced failure of the brackets or force delivery appliances. This study was approved by the ethical committee of the West China Hospital of Stomatology. Informed consent was obtained from each patient enrolled in the study. An unstratified subject allocation sequence was carried out using a computer program; random numbers were generated, and the assignment was concealed from the clinician until the appointment when the force delivery appliance was placed. Although the clinician was not blinded to the space closure, the researchers who measured the dental casts were kept blind.

Clinical protocols

All patients were treated with a 0.022-inch slot Pre-Adjusted Straight Wire Appliance (MBT, 3M Unitek, California, USA). After aligning and level-
Comparing two methods of orthodontic space closure

Table 1. Demographic Characteristics of Treatment Groups

<table>
<thead>
<tr>
<th>Variables</th>
<th>NCS (n = 18)</th>
<th>EM (n = 18)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Male</td>
<td>8 (44.4%)</td>
<td>8 (44.4%)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>10 (55.6%)</td>
<td>10 (55.6%)</td>
<td></td>
</tr>
<tr>
<td>Mean Age (y)</td>
<td>12.8 (0.9)</td>
<td>12.7 (0.9)</td>
<td>NS</td>
</tr>
</tbody>
</table>

NS, Not Significant.

ling, plain 0.019×0.025-inch stainless steel archwires were engaged in the slots and ligated with 0.010-inch stainless steel wire. The 0.019×0.025-inch stainless steel archwires were placed in the upper and lower arches for at least one month before space closure to ensure the friction between the brackets and the archwires was at a minimum. The sliding method used in this study followed the protocol suggested by Nightingale et al. [7] with a force magnitude of 170 g. The schematic diagram of space closure with two appliances is shown in Figure 1. To maintain the same force magnitude, we measured the force with a dynamometer (Aojie, Hangzhou, China) at each visit.

It was important to prevent any anterior occlusal interference during space closure. Dental casts were collected at the start of the space closure (T1) and the end of retraction (T2). The T2 model was collected before there would be any occlusal contact on the anterior teeth because this might have affected the results. During the period from T1 to T2, Inter-arch class II elastics were not used to ensure that the force for space closure was solely generated by the NiTi coil spring or the elastomeric module. Appointments were scheduled every 4 weeks for all the patients to monitor the force level, during which the elastomeric module was replaced while the NiTi spring coil was reactivated.

A digital caliper was used to measure the distance from the cusp tip of the canine to the central groove of the second premolar in each quadrant of the upper arch casts. The rate of space closure was calculated according to the following formula:

\[
\text{Rate} = \frac{\text{The distance of T1} - \text{the distance of T2}}{\text{the number of visit during T1 to T2}}
\]

The examiner was blind to the treatment groups, the measurements were taken three times, and the average was calculated to minimize the random error. The measurement and calculation were repeated one week later and showed no statistically significant difference.

The asymmetry rate of the tooth movement of each subject was converted into the asymmetry index according to the following formula:

\[
\text{Asymmetry index} = \frac{\text{rate of rapid side} - \text{rate of the slow side}}{\text{rate of rapid side}} \times 100\%
\]

Statistical analysis

Date were analyzed with SPSS software (version 17.0, SPSS, Chicago, USA), and independent Student’s t tests were used to analyze the differences in the rate of space closure and the bilateral symmetry of tooth movement between the two force delivery systems. P<0.05 was considered statistically significant.

Results

Rate of space closure

Figure 2 shows the flow of the patients through this clinical trial. Six patients did not finish this trial due to the failure of brackets or force delivery appliances. The final sample size was 18 in each group. Baseline demographic information of the two groups is shown in Table 1. Participants who completed the clinical study had similar age distributions (NiTi coil spring—mean age, 12.8±0.9 years; elastomeric module—mean age, 12.7±0.9 years) and gender distribution in both groups. The comparison of the rate of space closure and the bilateral asymmetry index of both groups is shown in Table 2. The results suggested that the rate of space closure of the NiTi spring was significantly higher than the rate of the elastomeric module. Significant differences were found in the duration of the space closure with these two methods. The NiTi spring generated an average rate of 1.06±0.16 mm/month, while the elastomeric module displayed an average rate of 0.52±0.14 mm/month.

The bilateral asymmetry of space closure

The asymmetric index of the NiTi spring group and the elastomeric module group is illustrated in Table 2. The bilateral asymmetry of the
Comparing two methods of orthodontic space closure

Table 2. Rate of tooth movement and Asymmetry index in the NiTi coil spring and Elastomeric module groups

<table>
<thead>
<tr>
<th>Variables</th>
<th>NiTi coil spring group</th>
<th>Elastomeric module group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of tooth movement (mm/mo)</td>
<td>1.06 ±0.16</td>
<td>0.52 ±0.14</td>
</tr>
<tr>
<td>Asymmetry index</td>
<td>7.53 ±2.69</td>
<td>14.75 ±8.60</td>
</tr>
</tbody>
</table>

*Significant at P<0.05.

amount of space closure was observed in both groups. Furthermore, there was significant difference of the asymmetry index between the two groups (P<0.05). The index of the NiTi spring (Mean = 7.53±2.69) was significantly smaller than that of the elastomeric module (Mean = 14.75±8.60), which means that the NiTi spring group displayed a more symmetric tooth movement pattern.

Discussion

This randomized controlled trial suggested that the NiTi spring is not only more rapid than the elastomeric module but also more asymmetric in orthodontics space closure.

It is known that the efficiency of space closure is affected by various factors, such as the type of bracket, size of the wire, and force degradation of the delivery systems [12-16]. In previous studies, the initial force magnitudes of the appliances were usually different. Additionally, the magnitude of the elastomeric module was not well defined. Orthodontists often lack the ability to apply the exact force with the elastomeric module [17]. Additionally, the different structures of the periodontal ligament and bone activity of adult patients and young patients might be related to the rate of orthodontic tooth movement [18]. The variation of alveolar bone resistance influences bone turnover, which would lead to different rates of space closure [19]. Ultimately, the occlusal interference was not considered in previous investigations [2-8], which might affect the final results. Therefore, in our study, these confounding factors were controlled.

In our investigation, the results showed that the NiTi spring closed spaces more rapidly than the elastomeric module in adolescent subjects with maxillary first premolar extractions. This finding agreed with the previous literature [4, 6]. The magnitude of the initial forces was the same (170 g) in our study, while the force degeneration was different between these two methods. In some previous studies, the elastomeric module was usually stretched at the discretion of the clinicians. Although the elastomeric module had a higher initial force, it was suggested that the force degeneration of the elastomeric module was rapid, while the NiTi spring could maintain a continuous force with a low magnitude for a longer period of time [14, 15]. Owman Moll et al. [20] demonstrated that constant force made teeth move statistically more rapidly than intermittent force. Moreover, the force loss might be more sensitive with the elastomeric module due to the decreased stretching length in our study, which likely contributed to the results.

In the present investigation, the rate of space closure in the NiTi spring group was 1.06±0.16 mm/month, greater than the results showed by Dixon V et al. [4], which was 0.81 mm/month. In this study, a different brand of NiTi spring was used, and the study was under strict control. The elastomeric module group showed a rate of 0.52±0.14 mm/month, which was smaller than that in the study by Nightingale [7] (0.84 mm/month). The initial force of the elastomeric module in the current study was 170 g, which was smaller than the force reported by Nightingale et al. In their study, the mean initial force was 209 g. In addition, the elastomeric module demonstrated acceptable force decay in Nightingale’s study. In fact, because the force was maintained at almost 50 percent during the period between the visits, the teeth kept moving with the elastic module.

The split-mouth design is widely used in clinical studies to eliminate individual differences [21]. However, internal bilateral differences exist and asymmetric space closure is common in orthodontic clinics. In the current investigation, the bilateral asymmetry of space closure was present in both groups, and the elastomeric module group showed more asymmetric space closure. One possible explanation for the bilateral asymmetric space closure was the pathologic asymmetry in the facial features and craniofacial morphology. The asymmetry was usually in three dimensions, leading to disequi-
Comparing two methods of orthodontic space closure

librium in the oral environment; therefore, the efficiency might be different on both sides. Masticatory muscles function as a local environmental factor and play an important role in regulating craniofacial growth. A unilateral chewing habit contributed to the different masticatory functions, which might lead to changes in width, height, and thickness of the alveolar bone. The different healing processes of the extraction socket might also contribute to bilateral asymmetric space closure [22].

The NiTi spring showed much better bilateral symmetry of space closure than the elastomeric module (Table 2). It seemed that during space closure using the split-mouth design, using the NiTi spring was more reliable than using the elastomeric module. This may be due to the different force degradation of the materials. The force provided by the elastomeric module is easily affected by the oral environment.

Clinicians should either increase the initial force level or shorten the period between appointments with the elastomeric module in space closure. In addition, in the split-mouth design space closure study, the factors related to bilateral asymmetry should be considered to decrease the influence on the treatment outcome.

Larger sample sizes would be necessary to validate the factors related to tooth movement, such as different growth patterns and different ages; the 3D laser scanning technique could be utilized to analyze the three-dimensional changes in space closure.

Conclusions

The aim of this study was to evaluate the rate and asymmetry of space closure of sliding mechanics with two different force delivery systems in the upper arch of adolescent subjects. The findings were as follows.

1. The NiTi coil spring leads to a significantly greater rate of space closure than the elastomeric module at the same initial force level;
2. Asymmetry of space closure was found in both study groups;
3. Space closure with the NiTi coil spring showed better bilateral symmetry than that with the elastomeric module.

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Xi Du, State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd Section of Renmin South Road, Chengdu 610041, Sichuan, China. Tel: 86-28-85503040; Fax: 86-28-85582167; E-mail: duxilz@hotmail.com

References

Comparing two methods of orthodontic space closure

