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Transfection of shRNA-survivin with lipo in 
combination with UTMD had the highest trans-
fection efficiency in HepG2 cells 

To determine the effect of combining UTMD 
with Lipo transfection on transfection efficiency 
in HepG2, the cells were divided into five 
groups: untreated, shRNA-survivin, shRNA-sur-
vivin with Lipo, shRNA-survivin with UTMD, and 
shRNA-survivin with both Lipo and UTMD. 
Transfection efficiency was first determined by 
observing fluorescent cells under a confocal 
microscope, which showed that the Lipo com-
bined with UTMD group had the highest trans-
fection efficiency, which was also significantly 
higher than that of single-Lipo group (Figure 
3A). Furthermore, fluorescence intensity and 
the proportion of transfected cells were qu- 
antified by flow cytometry. No fluorescence was 
detected in the untreated group. The percent-
ages of transfected (fluorescent) cells were 
0.69 ± 0.18% in the shRNA-survivin alone 
group, which was not statistically different from 

that of the control. In contrast, the percentage 
of positive cells in the UTMD + Lipo + shRNA-
survivin group was significantly higher than that 
of the Lipo + shRNA-survivin group and the 
UTMD + shRNA-survivin group (43.22 ± 5.23% 
vs. 25.55 ± 1.39% and 23. 78 ± 2.14%, res- 
pectively; Figure 3B). As indicated in Figure 3C, 
the cell viabilities of the Lipo + shRNA-survivin 
group, UTMD + shRNA-survivin group, and the 
UTMD + Lipo + shRNA-survivin group were sig-
nificantly decreased, as compared to the un- 
treated group. However, these differences in 
cell viability among the three groups were not 
significant. These results suggested that UT- 
MD effectively induced Lipo-mediated shRNA 
transfection.

Transfection of shRNA-survivin in combination 
with UTMD and lipo resulted in the highest 
degree of survivin downregulation

To further investigate the effects of combining 
UTMD with Lipo transfection on survivin expres-

Figure 3. Transfection efficiency and viability of HepG2 
cells with different treatments. Cells were treated as 
described in the materials and methods section. A. 
Transfection efficiency of HepG2 cells was observed by 
confocal microscopy. B. Transfection efficiency of HepG2 
cells was observed by flow cytometry. C. Cell viability of 
different experimental groups was detected using the 
CCK-8 kit. Values are presented as means ± SD (n = 
4); aP < 0.05, bP < 0.01 versus the vehicle-treated con-
trol group; cP < 0.05 versus the single-shRNA-survivin-
treated group.



UTMD promotes lipofectamine-mediated shRNA transfection efficiency in HepG2 cells

15146 Int J Clin Exp Med 2017;10(11):15140-15150

sion in HepG2 cells, expression levels of sur-
vivin mRNA and protein were detected by qPCR 
and western blotting, respectively. The results 
showed that survivin expression was evidently 
lower in the Lipo + shRNA-survivin group than 
that in the single-shRNA-survivin group (Figure 
4A and 4B). There was no difference in survi- 
vin expression between the Lipo + shRNA-sur-
vivin group and UTMD + shRNA-survivin group 
(Figure 4A and 4B). However, the UTMD + Lipo 
+ shRNA-survivin group had the most signifi- 
cant inhibitory effects on survivin expression in 
HepG2 cells, with survivin levels markedly lower 
than those of the UTMD + shRNA-survivin group 
or the Lipo + shRNA-survivin group (Figure 4A 

and 4B). In addition, the same results were 
found for survivin mRNA expression (Figure 
4C). These results suggested that UTMD in- 
duced Lipo-mediated shRNA transfection tar-
geting survivin and efficiently inhibited survivin 
expression.

UTMD combined with lipo increased shRNA-
mediated inhibition of survivin there by pro-
moting apoptosis of HepG2 cells

As survivin expression was markedly inhibited 
by shRNA-survivin transfection in combination 
with UTMD and Lipo, cell viability and apoptosis 
caused by survivin downregulation were then 

Figure 4. Expression of survivin mRNA and protein 
in HepG2 cells under different experimental condi-
tions. A. Survivin expression was detected by west-
ern blot analysis at 48 h after transfection. B. Bar 
chart shows the quantification of survivin. C. Expres-
sion of survivin mRNA was determined by qPCR at 
48 h after transfection. Values are presented as 
means ± SD (n = 4); dP < 0.01 versus the single-
shRNA-survivin group; eP < 0.01 versus the Lipo + 
shRNA-survivin-treated group.

Figure 5. Apoptosis and viability of HepG2 cells at 48 h after different treatments. A. Viability of transfected-HepG2 
cells was detected using the CCK-8 assay. B. Apoptosis of transfected-HepG2 cells was detected by flow cytometry. 
Values are presented as means ± SD (n = 4); dP < 0.01 versus the single-shRNA-survivin group; eP < 0.01 versus the 
Lipo + shRNA-survivin-treated group.
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investigated. Cells were treated as described in 
the material and methods section and cell via-
bility and apoptosis were detected at 48 h fol-
lowing treatments. The results showed that cell 
viability was lowest in the UTMD + Lipo + shR-
NA-survivin group, which was lower than that of 
the Lipo + shRNA-survivin group or the UTMD + 
shRNA-survivin group (Figure 5A). Furthermore, 
the same results were found in the apoptotic 
rate of HepG2 cells (Figure 5B). These results 
confirmed that UTMD promoted Lipo-mediated 
shRNA transfection by efficiently targeting sur-
vivin, thereby inhibiting survivin expression and 
inducing apoptosis of HepG2 cells.

Discussion

HCC is one of the most common malignant 
tumors worldwide and is associated with high 
morbidity and mortality rates [1]. However, 
there is currently no satisfactory therapy for 
HCC. It has been demonstrated that apoptosis 
is dysregulated in tumor cells, which results in 
resistance to cell death. Hence, the induction 
of apoptosis is considered as a major strategy 
for anti-tumor therapy [22]. Survivin is a mem-
ber of the mammalian inhibitor of apoptosis 
protein family, which has become the best 
studied anti-apoptotic protein [13]. Survivin is 
overexpressed in the majority of tumors, includ-
ing HCC, and is closely associated with tumor 
cell differentiation, proliferation, invasion, and 
metastasis. Therefore, targeted inhibition of 
the survivin gene is particularly attractive as an 
ideal anti-cancer strategy both in vitro and in 
vivo [23]. Recently, RNAi, which is highly effi-
cient and specific for blocking expression of tar-

in vivo [26, 27]. The results of the present study 
showed that shRNA-survivin transfection sig-
nificantly inhibited survivin expression and in- 
duced apoptosis of HepG2 cells. A recent study 
showed that shRNA-mediated SOX9 downregu-
lation effectively inhibited cell proliferation and 
induced apoptosis in the human HCC cell line 
Hep3B [28]. These results indicate that shRNA-
mediated gene downregulation could be a pre-
dominant strategy in HCC therapy.

Sonoporation is the main mechanism of UTMD, 
which is a non-invasive approach for transfer of 
DNA or drugs into cells, by producing reversible 
small holes in the cell membrane, as observed 
by scanning electron microscopy [29]. A num-
ber of studies have shown that the great power 
released by “transient cavitation” functions as 
a driving force [30, 31]. The shock waves and 
jet flow generated by the bursting of LMs 
destroys the local integrity of the cell mem-
brane, induces reversible permeability of the 
cell membrane, and promotes DNA penetra-
tion, thereby improving genetic transduction 
efficiency [32]. UTMD has several advantages 
over other methods, such as low cytotoxicity, 
low immunogenicity, and repeatable applicabil-
ity. A previous report [33] indicated that UTMD 
was a useful tool for gene delivery, while the 
combination of UTMD with other transfection 
strategies (such as the use of polyethylenimine 
or cationic polymers) could obtain higher trans-
fection rates than the use of polyethylenimine 
or cationic polymers alone for shRNA delivery 
[34, 35]. Moreover, Lipo has been widely used 
for gene delivery. Koo et al. [36] used Lipo to 
transfer microRNA-145 into human glioblasto-

Figure 6. UTMD promot-
ed Lipo-mediated shR-
NA-survivin transfection 
efficiency thereby inhib-
iting survivin expression 
and inducing apoptosis 
of HepG2 cells.

get genes, has become a 
novel promising strategy for 
cancer gene therapy and anti-
virus and gene drug selec- 
tion [24, 25]. Moreover, use of 
shRNA expression vectors is 
considered to be more effec-
tive than siRNA. Also, shRNA 
targeting survivin-induced ap- 
optosis has also been consi- 
dered as an efficient, novel 
strategy for cancer gene ther-
apy. Previous studies have fo- 
und that shRNA plasmid trans-
fection targeting survivin in- 
hibits gene expression and 
induces apoptosis in cervical 
cancer cells both in vitro and 
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ma cells and Wang et al. [37] reported that this 
reagent was useful for transfection. However, 
relevant studies about the effect of UTMD on 
Lipo-mediated gene delivery are currently rare. 
Therefore, the aim of the present study was to 
determine whether the combination of UTMD 
and Lipo could improve shRNA intracellular 
delivery. As expected, the average transfection 
rate was 43.22% ± 5.23% in the UTMD + Lipo + 
shRNA-survivin group, which was the highest 
rate of all measured groups. Exposure to Lipo 
alone or UTMD + Lipo resulted in negligible dif-
ferences in cell membrane injury and induced 
no significant difference in cell viability. These 
findings indicate that the combined use of 
these two approaches can significantly improve 
gene transfection efficiency, while not increas-
ing the rate of cell death. Moreover, Zheng et al. 
[38] used microbubbles to promote Lipo-
mediated siRNA transduction to rat retina and 
Xue et al. [39] transduced siRNA into HepG2 
cells, and came to the same conclusion that 
the combination of Lipo, microbubbles, and 
ultrasound exposure effectively reduced target 
gene expression. The results of the present 
study complemented previous work on com- 
bining UTMD with RNAi transfection, which 
reduced toxicity to normal cells and may open 
up avenues to new therapeutic strategies for 
HCC-directed therapy.

These results showed that the use of UTMD 
with Lipo could be an effective strategy for can-
cer gene therapy and the use recombinant 
shRNA as vectors presents a powerful tech-
nique for gene analysis, which led to significant 
suppression of survivin protein expression in 
vitro (Figure 6). Thus, the survivin gene could 
be an ideal target for cancer genetic therapy  
in HCC. However, further in vivo research is 
required to investigate whether this approach 
is suitable for efficient, specific, and noninva-
sive gene transfer in animals and humans.
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