Original Article

Protective effects of wogonoside against β-amyloid-induced neurotoxicity and neuroinflammation

Meifang Jin*, Min Zhang*, He Zhao, Lixiao Xu, Guanghao Su, Gang Li

*Institute for Pediatric Research, Affiliated Children’s Hospital, Soochow University, Suzhou, China. *Equal contributors.

Received December 22, 2016; Accepted June 17, 2017; Epub October 15, 2017; Published October 30, 2017

Abstract: Accumulation of beta-amyloid (Aβ) is one of the most important features of Alzheimer’s disease (AD), which plays a critical role in AD-related neurotoxicity, neuroinflammation, oxidative stress and neuronal cell death. In the current study, we were aiming to investigate the effects of wogonoside on Aβ1-42-induced neurotoxicity and neuroinflammation. We found in HT22 cells, wogonoside treatment significantly ameliorated Aβ1-42-induced cell death, cell apoptosis and suppressed the release of lactate dehydrogenase (LDH). Moreover, we observed that in BV-2 cells, wogonoside treatment inhibited pro-inflammatory cytokines production and oxidative stress induced by Aβ1-42. Furthermore, we found that wogonoside treatment significantly increased Bcl-2/Bax ratio, suppressed Akt/NF-κB pathway but activated Nrf2/HO-1 pathway. In conclusion, our study demonstrated that wogonoside may exert anti-apoptotic, anti-inflammatory and anti-oxidative effects against Aβ-induced neurotoxicity and neuroinflammation, and suggested wogonoside as potential drug candidate for AD.

Keywords: Beta-amyloid, Alzheimer’s disease, wogonoside, Akt/NF-κB, Nrf2/HO-1

Introduction

Alzheimer’s disease (AD) is the most common age-related neurodegenerative disease in the elderly [1, 2]. The main pathological features of AD are the extracellular formation of beta-amyloid (Aβ) plaques and the intracellular formation of neurofibrillary tangles [3]. Although the exact cause and related mechanisms of AD still remain largely unknown, many evidences show that neuronal apoptosis, mitochondria dysfunction and oxidative stress played critical roles in the pathogenesis of AD [4-7].

Microglia-mediated neuroinflammation, characterized by excessive microglia activation and overproduction of pro-inflammatory cytokines and chemokines, is also an important component of AD, which starts as a defense mechanism against the Aβ deposition in the brain, but can also lead to neurodegeneration [8]. Excessive activation of microglia will not only release inflammatory cytokines, but will also synthesize and release some cytotoxic factors, such as nitric oxide and reactive oxygen species, leading to significant neuronal cell damage [9]. This indicates that inhibition of microglia-mediated inflammatory responses can play a potential therapeutic role in the treatment of AD.

More than 40 flavonoids derivatives have been extracted and identified from the roots of Scutellaria baicalensis Georgi [10]. Among them, the most abundant content is baicalin and wogonoside [11]. Both baicalin and wogonoside were found to exhibit anti-tumor, anti-oxidative and anti-inflammatory activities [12-19]. Recently, it has been reported that baicalin has protective effects on Aβ-induced cognitive impairment, oxidative stress and neuronal apoptosis in rat [20, 21], as well as the inhibitory effects on Aβ-induced microglial cell activation [22], which suggested the protective role of baicalin in the pathogenesis of AD. However, the effect of wogonoside on AD, especially on Aβ1-42-induced neurotoxicity and neuroinflammation, has not been reported.

In this study, we were aiming to investigate the role of wogonoside in Aβ-induced neurotoxicity and neuroinflammation in cultured HT22 hippocampal cells and BV-2 microglial cells. We found that wogonoside treatment significantly in-
Wogonoside prohibits neurotoxicity and neuroinflammation

creased HT22 cell viability, inhibited the release of LDH and suppressed cell apoptosis after Aβ1-42 challenge. Furthermore, we observed that treatment of wogonoside increased the expression of Bcl-2 and decreased Bax protein level, leading to the increased level of Bcl-2/Bax ratio. Moreover, we found wogonoside treatment decreased the expression of pro-inflammatory cytokines, ameliorated Aβ1-42-induced oxidative stress in Aβ1-42-treated BV-2 cells, which may relate to the suppressed Akt/NF-κB pathway and activated Nrf2/HO-1 pathway modulated by wogonoside.

Material and methods

Cells and materials

HT22 hippocampal cells and BV-2 microglial cells were obtained from American Type Culture Collection (Manassas, VA). Aβ1-42 was purchased from American Peptide Company (Sunnyvale, CA, USA). Wogonoside was purchased from Langze Pharmaceutical Company (Nanjing, China). Antibodies used for β-actin (#3700), Nrf2 (#12721), HO-1(#70081), Bax (#2772), Bcl-2 (#2764), p-Akt (#4060), Akt (#4685), p-P65 (#3033), P65 (#8242) were all obtained from Cell Signaling Technology.

Flow cytometry and caspase assay

After pre-incubation with wogonoside followed by Aβ1-42 treatment, HT22 cells were collected and suspended in 100 μL binding buffer. 5 μL of Annexin V-PE and 5 μL of 7-amino-actinomycin D (7-AAD) were added and the mixture was incubated in the dark for 15 min. The caspase-3 activity was examined by commercial detection kit (ab39401, Abcam) according to the manufacturer’s protocol.

Cell viability assay and Lactate dehydrogenase (LDH) activity assay

A commercial LDH diagnostic kit (STANBIO Laboratory, Boerne, TX, USA) was used to measure LDH activity according to the manufacturer’s instructions. The procedure of cell viability assay was as follow: After pre-incubation with wogonoside followed by Aβ1-42 treatment, 20 μL MTT was added to each well and incubated at 37°C. Four hours later, the supernatants were aspirated off and 130 μL of DMSO was added to. SpectraMax Plus384 Microplate Reader (Molecular Devices, USA) was used to detect the value of optical density.

ELISA and qRT-PCR

TNF-α and IL-6 ELISA kits (R&D Systems, Minneapolis, MN, USA) were used to measure the protein levels of TNF-α and IL-6 in cell-free supernatants. Total RNA was extracted by TRIzol reagent (Invitrogen). Synthesis of cDNA was performed with M-MLV First Strand Kit (Taraka, China). Real-time PCR was implemented with GoTaq qRT-PCR Master Mix (Promega, USA). GAPDH was used as the internal control, and the 2^(-ΔΔCT) method was used to analyze the results. Primer sequences: TNF-α: 5’-AGG GCC ATT CCT ACT CCC AT-3’ (F), 5’TGT AGC CCC GGA TAC ACA GA-3’ (R); IL-6: 5’-CAC TTC ACA AGT GCA TCA TCG CT-3’ (F), 5’TCT GAC AGT GTC TGC GTC CC-3’ (F), 5’-ACT GTG CCG TTG AAT TTG CC-3’ (R).

Measurement of intracellular MDA and activities of SOD and CAT

MDA level was measured with a commercial kit (Nanjing Jiancheng Biochemistry Co., Nanjing, China) according to the manufacturer’s instructions. The activities of SOD and CAT were measured using colorimetric assay kits (Abcam, USA) according to the protocols provided by the manufacturer.

Western blot analysis

Cell were collected and lysed with RIPA Lysis (Thermo Fisher scientific) with a protease inhibitor cocktail tablet (Roche diagnostic, Basel, Switzerland). Western blot analysis was performed as described [23].

Statistical analysis

All the data were reported as mean ± S.D. and statistical differences were analyzed by one-way ANOVA followed by Turkey test. P<0.05 was considered statistically significant.

Results

Wogonoside attenuated Aβ1-42-induced cytotoxicity

To investigate the effect of wogonoside on Aβ1-42-induced neurotoxicity, we firstly exam-
Wogonoside inhibits Aβ₁₋₄₂-induced pro-inflammatory cytokines production in microglial cells

Wogonoside has been reported to play anti-inflammatory roles in diverse disease models [12, 15]. Therefore, we examined the effect of wogonoside on Aβ₁₋₄₂-induced inflammation in BV-2 microglial cells. We found the mRNA levels of pro-inflammatory cytokines such as TNF-α and IL-6 were both up-regulated by Aβ₁₋₄₂ challenge, but pre-treatment with wogonoside significantly decreased the expression of these cytokines in a dose-dependent manner (Figure 3A). Consistently, the secreted protein levels of TNF-α and IL-6 in wogonoside-treated groups were also decreased compared to the control group (Figure 3B).

Wogonoside attenuated Aβ₁₋₄₂-induced oxidative stress in microglial cells

Furthermore, we examined the effect of wogonoside on Aβ₁₋₄₂-induced oxidative stress. As shown in Figure 4, oxidative stress was assessed by measuring the level of malondialdehyde (MDA) (Figure 4A), and the activities of antioxidant enzymes including superoxide dismutase (SOD) (Figure 4B) and catalase (CAT) (Figure 4C). We found pre-treatment of wogonoside significantly reduced the produc-
Wogonoside suppresses Aβ\textsubscript{1-42}-induced cell apoptosis. HT22 cells were incubated without or with wogonoside (50, 100 μM) for 4.0 h, followed by incubation with Aβ\textsubscript{1-42} for another 24 h. (A and B) The percentage of apoptotic cells was measured by flow cytometry analysis. (C) Caspase-3 activity was detected with a fluorometric assay. (D) Protein levels of Bax and Bcl-2 were examined by western blot. (E) Quantification of protein levels of Bax and Bcl-2 in (D). Results are shown as the mean ± S.D. and represent three independent experiments. *, P<0.05; **, P<0.01; ***, P<0.001.
Wogonoside prohibits neurotoxicity and neuroinflammation

Figure 3. Wogonoside inhibited Aβ_{1-42}-induced pro-inflammatory cytokines production in microglial cells. BV-2 cells were incubated without or with wogonoside (50, 100 μM) for 4.0 h, followed by incubation with Aβ_{1-42} for another 24 h. A. mRNA levels of TNF-α and IL-6 were examined by qRT-PCR. B. Protein levels of TNF-α and IL-6 were measured by ELISA. Results are shown as the mean ± S.D. and represent three independent experiments. *, P<0.05; **, P<0.01; ***, P<0.001.

Figure 4. Wogonoside attenuated Aβ_{1-42}-induced oxidative stress in microglial cells. BV-2 cells were incubated without or with wogonoside (50, 100 μM) for 4.0 h, followed by incubation with Aβ_{1-42} for another 24 h. Intracellular MDA level (A), SOD activity (B) and CAT activity (C) were detected. *, P<0.05; **, P<0.01; ***, P<0.001.

Wogonoside suppressed Akt/NF-κB pathway and activated Nrf2/HO-1 pathway in Aβ_{1-42}-treated microglial cells

Previous studies revealed that wogonoside plays an inhibitory role in Akt/NF-κB pathway [12, 15]. In order to investigate how wogonoside regulates the pro-inflammatory cytokines production and oxidative stress, we examined the protein levels of p-Akt, Akt, p-P65 and P65 in Aβ_{1-42}-treated microglial cells (Figure 5A). We found that the expression of p-Akt and p-P65 was significantly reduced in wogonoside-administrated BV-2 cells in a dose-dependent manner (Figure 5B and 5C). It has been reported that Nrf2/HO-1 pathway plays critical roles in controlling antioxidant responses and inhibition of NF-κB signaling in microglia cells [24, 25], therefore we also examined the effect of wogonoside on Nrf2 and HO-1 expression. We found the protein levels of Nrf2 and HO-1 were both decreased in BV-2 cells after Aβ_{1-42} treatment (Figure 5A). Most importantly, we found wogonoside could up-regulate the expression of Nrf2 and HO-1 in a dose-dependent manner (Figure 5D and 5E) in Aβ_{1-42}-treated BV-2 microglial cells.

Discussion

In the current study, in order to investigate the function of wogonoside in AD, we examined the effect of wogonoside on Aβ_{1-42}-induced neurotoxicity and neuroinflammation in cultured HT22 hippocampal cells and BV-2 microglial cells. To the best of our knowledge, this is the first article to demonstrate the protective role of wogonoside against Aβ_{1-42}-induced nervous system disease.

Alzheimer’s disease is the most common neurodegenerative disorder in the world [26]. This disease is characterized by synaptic impairment [27], neurotrophin and neurotransmitter imbalance, mitochondrial dysfunction, oxidative stress, intracellular calcium increase and
Wogonoside prohibits neurotoxicity and neuroinflammation

cell cycle failure [28]. The most severe changes are in hippocampus, as well as in cortical and subcortical regions [29], which are associated with the AD memory deficits [30]. Abnormal cleavage of amyloid precursor protein results in the accumulation of Aβ in the brain, and leads to the pathological manifestations of AD [31]. It has been well studied that treatment with or intracerebral injection of Aβ1-42 significantly induced neurotoxicity and AD related cognitive and cerebral changes in vivo and in vitro [32, 33]. Similar with their findings, in the current study, we found stimulated with Aβ1-42 indeed decreased the cell viability of HT22 cells, increased the release of LDH and promoted cell apoptosis. However, we found pre-treatment with wogonoside significantly reversed these phenomenon induced by Aβ1-42, and wogonoside treatment increased Bcl-2/Bax ratio which indicated that wogonoside could protect HT22 cells from Aβ1-42-induced cell apoptosis and neurotoxicity.

Oxidative stress has been found to be implicated in the neurotoxicity of Aβ and in the pathogenesis of AD, and there is growing evidence that oxidative stress is closely related to the inflammatory response of microglia [34, 35]. Consistently, we found Aβ1-42 treatment significantly increased the level of MDA and suppressed the activities of SOD and CAT in BV-2 cells. Whereas after pre-incubation with wogonoside, MDA level in BV-2 cells was greatly decreased, as well as the increased activities of SOD and CAT. Similar with oxidative stress, neuroinflammation, characterized by excessive glial activation and overproduction of pro-inflammatory cytokines and chemokines, was also found to play critical roles in the pathogenesis of neurodegeneration in AD and related neurodegenerative disorders [36]. In the current study, we observed that both mRNA and protein levels of pro-inflammatory cytokines such as TNF-α and IL-6 induced by Aβ1-42 were significantly decreased in the presence of wogonoside. Our findings suggested that wogonoside played anti-apoptotic, anti-oxidative and anti-inflammatory roles in the protection against Aβ1-42 stimulation.

Akt/NF-κB signaling has represented a paradigm for signal transduction and pro-inflammatory cytokines production implicated in numerous diseases including AD [37-39]. Previous studies also reported that wogonoside could inhibit Akt/NF-κB signaling activation in diverse diseases [12, 15]. Consistently, in the present research, we found wogonoside treatment greatly inhibited Akt/NF-κB pathway activation through suppressing the phosphorylation of Akt.

Figure 5. Wogonoside suppressed Akt/NF-κB pathway and activated Nrf2/HO-1 pathway in Aβ1-42-treated microglial cells. BV-2 cells were incubated without or with wogonoside (50, 100 μM) for 4.0 h, followed by incubation with Aβ1-42 for another 24 h. A. Protein levels of p-Akt, Akt, p-P65, P65, Nrf-2 and HO-1 were examined by western blot. B-E. Quantification of protein levels of p-Akt, p-P65, Nrf-2 and HO-1 in (A). *, P<0.05; **, P<0.01; ***, P<0.001.
Wogonoside prohibits neurotoxicity and neuroinflammation

and P65, and this inhibition may lead to the decreased production of pro-inflammatory cytokines. Nrf2 is crucial for the regulation of antioxidant genes, including HO-1 and NQO1, and it has been reported that the Nrf2/HO-1 signaling pathway plays an important role in the action of neuroprotectant [40, 41]. In this study, for the first time, we found wogonoside induced HO-1 expression and increased Nrf2 levels in a dose-dependent manner in Aβ1-42-stimulated BV-2 cells.

In conclusion, these results indicated that wogonoside could increase Bcl-2/Bax ratio, inhibit Akt/NF-κB signaling and activate Nrf2/HO-1 pathway, therefore played anti-apoptotic, anti-oxidative and anti-inflammatory roles to protect HT22 hippocampal cells and BV-2 microglial cells against Aβ1-42-induced neurotoxicity and neuroinflammation.

Acknowledgements

This work was partly supported by NSFC grants 31400738 (To Gang Li).

Disclosure of conflict of interest

None.

Address correspondence to: Gang Li, Institute for Pediatric Research, Affiliated Children’s Hospital, Soochow University, Suzhou 215021, Jiangsu, China. E-mail: ligang933@163.com

References

[16] Shi H, Ren K, Lv B, Zhang W, Zhao Y, Tan RX and Li E. Baicalin from Scutellaria baicalensis blocks respiratory syncytial virus (RSV) infection and reduces inflammatory cell infiltration
Wogonoside inhibits neurotoxicity and neuroinflammation

[38] Ito S, Sawada M, Haneda M, Fuji I, Oh-Hashi K, Kiuchi K, Takahashi M and Isobe K. Amyloid-beta peptides induce cell proliferation and macrophage colony-stimulating factor expres-
Wogonoside prohibits neurotoxicity and neuroinflammation
