Optimizing dosage regimen for FP3 based on vascular normalization window monitored by ratio of Ang-1 to Ang-2

Zhonghai Guan¹, Xiangheng Chen², Xiaoxia Jiang¹, Zhongqi Li¹, Xiongfei Yu¹, Ketao Jin³, Jiang Cao⁴, Lisong Teng¹

¹Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; ²Department of Minimally Invasive Surgery, The 2nd Xiangya Hospital of Central South University, Changsha, China; ³Department of Gastrointestinal Surgery, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China; ⁴Clinical Research Center, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China

Received September 23, 2016; Accepted December 22, 2016; Epub February 15, 2017; Published February 28, 2017

Abstract: Vascular normalization explained the successful efficacy of combined antiangiogenic and cytotoxic therapy. The optimal dosage regimen of anti-VEGF therapy to achieve a maximized efficacy and a minimized toxicity response needs further investigations based on vascular normalization monitoring. FP3 (also referred to as Conbercept, KH902 or Fusion protein III, developed by KanghongBiotechnology, China) is a novel anti-VEGF agent, which has been demonstrated to have a stable effect on antiangiogenesis as well as on vascular normalization. A patient-derived colorectal cancer xenograft model was established. Dose-escalation study of FP3 (7.5, 15, 30 and 60 mg/kg) combined with CPT-11 was performed to discover the optimal dosage regimen. Serum Ang-1 and Ang-2 expression were detected by ELISA. A potential correlation between drug responses and Ang-1/Ang-2 ratio were analyzed. The PDX model was evaluated as FP3-sensitive. FP3 (15 mg/kg, i.v.qw) combined with CPT-11 was found to be the optimal dosage regimen. All dosages of FP3 groups showed an ascending Ang1/Ang2 ratio after drug administration, while ascending velocity was less significant in 7.5 and 15 mg/kg FP3 groups than that in 30 and 60 mg/kg FP3 groups. The Ang1/Ang2 ratio was shown somewhat higher in 15 mg/kg FP3 compared with that in 7.5 mg/kg FP3 group despite of no statistical significance. In our study, the optimal dosage regimen for FP3 in combination with CPT-11 was discovered. The ratio of Ang-1/Ang-2 was demonstrated as an effective surrogate maker for vascular normalization, although further confirmations are needed.

Keywords: Patient-derived xenograft model, colorectal cancer, vascular normalization, anti-VEGF therapy, optimal dosage regimen, Ang-1/Ang-2 ratio

Introduction

Several clinical trials have demonstrated the clinical benefits of anti-angiogenic agents on cancer over the past few years [1, 2]. Vascular endothelial growth factor-A, (VEGF-A, usually named as VEGF), an important proangiogenic growth factor, is known to play an important role in angiogenic processes through both direct and indirect mechanisms [3]. VEGF inhibitors, including anti-VEGF monoclonal antibodies (Bevacizumab), VEGF-binding proteins (such as Aflibercept), and VEGFR tyrosine kinase inhibitors (such as Regorafenib), have been validated effective at inhibiting angiogenesis in many tumors [4, 5]. Bevacizumab conferred survival benefit as a combination therapy (although not for monotherapy) [6-8]. However, it seems paradoxical that destroying the vasculature would severely depress the delivery of oxygen and agents to the solid tumor. Jain RK firstly raised the potential hypothesis for the success of combined therapies that anti-VEGF therapies “normalized” the architecture and function of existing vasculature, resulting in enhanced delivery of concurrently administered drugs [9-11]. The normalization window, defined as a period of time when blood flow and oxygen-supplying transitorily increases, was dose and time dependent [12]. Therefore, more studies regarding the degree and length of vascular normalization window will be critical for optimiz
Optimizing FP3 dosage based on vascular normalization window

...ing the efficacy of combined anti-VEGF and cytotoxic therapy.

One of the challenges is to identify suitable surrogate markers for monitoring changes in the architecture and function of the vasculature [9]. Angiopoietin-1 (Ang-1) and its natural antagonist angiopoietin-2 (Ang-2) are among the leading growth factors involved in the maturation, maintenance, and remodeling of the tumor vasculature [13, 14]. Although the regulatory effect of Ang-1 and Ang-2 on tumor angiogenesis remains controversial, increasing studies have shown that Ang-1/Ang-2 ratio is related with the balance of pro- and antiangiogenic processes in most malignancies [15, 16]. Vascular normalization will occur when the imbalance of pro- and antiangiogenic molecules has been corrected [9]. The normalized vasculature appears as less tortuous and less dilated vessels, covered by pericytes more widely [6, 17]. The main producer of Ang-1 is pericytes, whereas Ang-2 is produced predominantly endothelial cells [18]. Therefore, the upregulation and balance of Ang-1/Ang-2 ratio, indicating more extensive pericyte coverage, might be potential surrogate markers for vascular normalization.

Patient-derived xenografts (PDXs), so-called Avatar models [19], have been increasingly widely used for cancer research in recent years, with the greatest advantage of its ability to better predict clinical tumor response [20]. Accumulating evidences indicate that PDX is an reliable cancer research tool for understanding of mechanisms of drug resistance, drug screening and personalized medicine applications [21]. [Aparicio S, 2015 #21; Chen W, 2016 #89] APDX model which was relatively sensitive to anti-VEGF therapies will be a priority selection for vascular normalization research.

A Novel VEGF-trapFP3 (also referred to as Conbercept, KH902 or Fusion protein III), which is engineered by fusing the 2nd extracellular domain of Flt-1 (VEGF receptor 1) and the 3rd and 4th extracellular domain of KDR (VEGF receptor 2) to the Fc portion of human immunoglobulin G1 [22, 23]. In the previous studies, our research group had showed that FP3 has an antitumor efficacy in PDXs of gastric carcinoma and colorectal cancer [23-26], as well as an effect in normalizing vasculature [27].

In this study, we established a patient-derived colorectal cancer xenograft model, which was demonstrated as FP3-sensitive, thus reliable for vascular normalization research. Different drug responses were compared among groups established in line with multistep dosages scheme of FP3 (7.5, 15, 30 and 60 mg/kg) combined with CPT-11 groups, and ELISA expressions of Ang1 and Ang2 were evaluated at different time points, such as 0, 7, 14, 21 and 28 days after treatment initiation. A rela-

Table 1. Average TGI of multistep treatment groups in FP3 preliminary evaluation (%)

<table>
<thead>
<tr>
<th></th>
<th>TGI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT-11</td>
<td>67.50461794</td>
</tr>
<tr>
<td>FP3 (20)</td>
<td>59.43733925</td>
</tr>
<tr>
<td>BEV (20)</td>
<td>46.67878413</td>
</tr>
<tr>
<td>FP3 (20)+CPT-11</td>
<td>80.75035137</td>
</tr>
<tr>
<td>BEV (20)+CPT-11</td>
<td>77.00048396</td>
</tr>
</tbody>
</table>

Figure 1. Efficacy evaluation of FP3 based on a colon cancer PDX model. A. Anti-tumor-growth ability evaluation by endpoint tumor volumes showed the sensitivity of the PDX model to both single FP3 and combined with CPT-11 treatment. B. Response curve of FP3 in the PDX model of colorectal cancer. Anti-tumor-growth ability of single FP3 and FP3 in combination with CPT-11.
Optimizing FP3 dosage based on vascular normalization window

Reagents and drugs

FP3 was provided by Kanghong Biotechnology, Inc. BEV (bevacizumab) was kindly provided by Department of Chemotherapy, the 1st Affiliated Hospital, School of Medicine, Zhejiang University. CPT-11 (Irinotecan HCIT rhydrate) was purchased from Dalian Melun Biology Technology Co. The antibodies against CD31, α-SMA, VEGF, VEGFR2, ki67, PCNA were purchased from Abcam.

Patient and tumor tissues

Colon Tumor (diagnosed as mucinous adenocarcinoma, T3N0M0) tissues were obtained at surgery from a 55-y-old female patient, without

Materials and methods

Reagents and drugs

FP3 was provided by Kanghong Biotechnology, Inc. BEV (bevacizumab) was kindly provided by Department of Chemotherapy, the 1st Affiliated Hospital, School of Medicine, Zhejiang University. CPT-11 (Irinotecan HCIT rhydrate) was purchased from Dalian Melun Biology Technology Co. The antibodies against CD31, α-SMA, VEGF, VEGFR2, ki67, PCNA were purchased from Abcam.

Patient and tumor tissues

Colon Tumor (diagnosed as mucinous adenocarcinoma, T3N0M0) tissues were obtained at surgery from a 55-y-old female patient, without

Figure 2. Immunohistochemical expressions of ki-67 and PCNA to evaluate the ability of anti-tumor-growth in different treatment groups.

Figure 3. Immunohistochemical expressions of VEGF and VEGFR2 to evaluate the ability of anti-angiogenesis in different treatment groups.

Figure 4. Vasculature density changes examined by angiography with immunostaining for endothelial cells (using anti-CD31 antibody; Magnification=200).
radio chemotherapeutic treatment before surgery. Informed consent was signed by the patient, while the study was according to the ethics board approval of the 1st Affiliated Hospital, School of Medicine, Zhejiang University.

Establishment of PDX model

BALB/c nude mice (3-to-4-week-old, female) were purchased from Shanghai Slaccas Laboratory Animal and housed in SPF laboratory animal rooms at laboratory animal center of Zhejiang University. Mice were acclimated to new environments for at least 3 days before use. Surgical tumor tissues were cut into pieces of 3 to 4 mm and transplanted within 30 min s.c. to mice. Additional tissues were snap-frozen and stored at -80°C until use. Animals were monitored periodically for their weight with an electronic balance and tumor growth with a Vernier caliper twice every week. The tumor volume was calculated as formula V=LD × (SD)²/2, where V represents the tumor volume, LD and SD are the longest and the shortest tumor diameter respectively. Tumors were then harvested, minced and re-implanted as described above for passaging. At each generation, tumors were harvested and stored in liquid nitrogen for further use. The usage of experimental animals was according to the Principles of Laboratory Animal Care (NIH #85-23, 1985 version). All animal studies were according to the Institutional Animal Care and Use Committee of Zhejiang University, and the approval ID was SYXK(ZHE)2005-0072.

Treatment protocol

From the 3rd generation, PDX tumors were permitted to grow to a volume of 150-200 mm³, then mice were randomized (6 mice with tumors per group and housed in per rearing cage; While 10 mice with tumors per group in the dose-escalation study of FP3 combined with CPT-11, among which 5-6 mice per group were needed for serum for ELISA examination). Then dosing was administrated by intravenous injection once per week for FP3 or BEV/bevacizumab and by intraperitoneal injection once per week for CPT-11/Irinotecan HCl Trihydrate (dosage details were shown in the Results section) for 4 weeks. Mice were weighed for signs of toxicity and tumor size was evaluated once per week. TGI (Relative tumor growth inhibition) was calculated using the following formula: (1-T/C)%, where T means the relative tumor volume of the treated mice, and C means the relative tumor volume of the control mice.

Immunofluorescence

Selected mice with similar tumor volume were anesthetized with chloral hydrate (5%, 0.2 ml/20 g) injected intramuscularly on day 30 (while on day 0 and 3 for observation of tumor vascular normalization after FP3 treatment). The vasculature was perfused with 4% paraformaldehyde. Then, xenograft tumor was harvested and stored in fixative for 2 hours at 4°C.
After PBS rinse and infiltration with 30% sucrose overnight, tissues were embedded in OCT and then frozen for cryostat sectioning. Then, the cryostat sections were fixed by acetone for 10 min. After that, slides were washed in PBS and dried for several times. After blocking nonspecific antibody binding, two primary antibodies (CD31 and α-SMA) were added on the slides overnight at room temperature. The signal was amplified for one hour with fluorescent secondary antibodies. All slides were counterstained with DAPI (Invitrogen). Tissue sections were photographed using Olympus BX51 Fluorescence Microscope.

Immunohistochemistry

Specimen were fixed by 10% neutral formalin, then embedded in paraffin, sectioned (5 μm thick) and placed on slides for marker analysis. Sections were incubated with the primary antibodies overnight at 4°C, after blocking nonspecific antibody bindings. The streptavidin-biotin peroxidase complex method (Lab Vision) was used for Immunohistochemistry. The slides were photographed using an Olympus BX60 (Olympus).

Enzyme-linked immunosorbent assay (ELISA)

Xengrafts tumor serum was obtained from CPT-11 combination treatment groups at different time points during treatments (details were shown in the results section). Concentration of serum Ang1 and Ang2 were evaluated by ELISA according to the manufacturer’s protocol (Multi Sciences Biotech).

Statistical analysis

Results were presented as mean ± SD. Calculation and statistics were performed with Excel 2010 (Microsoft) and GraphPad Prism 5 (GraphPad Software). One-way ANOVA were used to analyze the significance of differences among groups. P<0.05 was considered statistically significant.

Results

APDX model reliable for vascular normalization study

To test whether the CRC PDX model we established were sensitive to the anti-VEGF therapies, anti-tumor-growth ability of FP3 were firsty evaluated. Since tumors volume reached 150-200 mm³, injections of FP3 (20 mg/kg), BEV (bevacizumab, 20 mg/kg), CPT-11 (irinotecan, 5 mg/kg) and saline were given i.v. once
Optimizing FP3 dosage based on vascular normalization window

Harvested tumors were measured. Then, TGI (relative tumor growth inhibition) was calculated as per the following formula: (1-T/C)%. We found that the TGI of single FP3 treatment on this model reached 59.4% (P<0.05), slightly higher than single BEV group, though without statistical significance (Figure 1; Table 1). For a combination therapy with FP3 and CPT-11, the PDX model was also evaluated as sensitive. The FP3 combined with CPT-11 treatment received a better tumor inhibition (TGI=80.8%) effect than either single FP3 or CPT-11 (Figure 1). Suppressed expressions of both ki-67 and PCNA were seen in the single FP3-treated group and more significantly in FP3+CPT-11 group (Figure 2).

To evaluate the toxicity response, we compared mice weight among groups. No significant different loss of weight was found in multistep dosages scheme of FP3 in combination with CPT-11 (Supplementary Figure 1).

Further, normalized vasculatures were investigated by immunofluorescence. Vascular normalization was observed on the third day since FP3 injection. The normalized vasculature appears as less tortuous and less dilated vessels, covered by pericytes more widely (Figure 5).

Discovery of the optimal dosage regimen for FP3 combination therapy

To discover the optimal therapeutic scheme for FP3, anti-tumor efficacy of FP3 were compared among groups established in line with multistep dosages scheme of FP3 (7.5, 15, 30 and 60 mg/kg) combined with CPT-11 (5 mg/kg). In the CPT-11 combination groups, the best effect of FP3 were observed in 15 mg/kg FP3 group (P<0.05, compared with 7.5 or 30 mg/kg groups; P>0.05, compared with 60 mg/kg group) (Figure 6, TGI values were shown in Table 2).

To investigate whether the optimal therapeutic scheme for FP3 were based on the different degree or window length of vascular normalization along with dose and time changes

![Graph](image-url)

Figure 7. ELISA results of serum Ang1 and Ang2 on day 0, 7, 14 and 28 in multistep dosages of FP3 combined with CPT-11.
Table 3. ELISA results of serum Ang1 and Ang2 in different treatment groups (n=3)

<table>
<thead>
<tr>
<th></th>
<th>pg/ml</th>
<th>Day 0</th>
<th>Day 7</th>
<th>Day 14</th>
<th>Day 21</th>
<th>Day 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ang1</td>
<td>41032.12±6954.59</td>
<td>47250.5±8208.56</td>
<td>51438.58±8238.4</td>
<td>52390.8±8109.79</td>
<td>57774.68±9792.32</td>
<td>57774.68±9792.32</td>
</tr>
<tr>
<td>Ang2</td>
<td>6588.54±732.06</td>
<td>7337.43±815.27</td>
<td>8218.74±913.19</td>
<td>7989.63±887.73</td>
<td>11431.82±1270.2</td>
<td>11431.82±1270.2</td>
</tr>
<tr>
<td>CPT-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ang1</td>
<td>57081.56±6204.52</td>
<td>26544.89±2085.31</td>
<td>19590.12±2929.36</td>
<td>9491.62±1211.69</td>
<td>2920.67±337.46</td>
<td>2920.67±337.46</td>
</tr>
<tr>
<td>Ang2</td>
<td>6398.04±457.01</td>
<td>17406.05±2048.89</td>
<td>10204.49±1212.81</td>
<td>5487.26±607.44</td>
<td>1820.67±214.77</td>
<td>1820.67±214.77</td>
</tr>
<tr>
<td>FP3(7.5)+CPT-11</td>
<td>51580.32±6367.94</td>
<td>17653.14±143.7</td>
<td>10204.49±1212.81</td>
<td>5487.26±607.44</td>
<td>1820.67±214.77</td>
<td>1820.67±214.77</td>
</tr>
<tr>
<td>Ang2</td>
<td>6398.04±457.01</td>
<td>17406.05±2048.89</td>
<td>10204.49±1212.81</td>
<td>5487.26±607.44</td>
<td>1820.67±214.77</td>
<td>1820.67±214.77</td>
</tr>
<tr>
<td>FP3(15)+CPT-11</td>
<td>39482.71±5892.94</td>
<td>9539.39±1923.79</td>
<td>4820.18±710.43</td>
<td>1308.33±159.83</td>
<td>331.04±45.41</td>
<td>331.04±45.41</td>
</tr>
<tr>
<td>Ang2</td>
<td>6271.24±591.63</td>
<td>278.27±26.25</td>
<td>92.03±7±6.79</td>
<td>439.53±35.73</td>
<td>103.53±8.41</td>
<td>103.53±8.41</td>
</tr>
<tr>
<td>FP3(30)+CPT-11</td>
<td>39482.71±5892.94</td>
<td>9539.39±1923.79</td>
<td>4820.18±710.43</td>
<td>1308.33±159.83</td>
<td>331.04±45.41</td>
<td>331.04±45.41</td>
</tr>
<tr>
<td>Ang2</td>
<td>6271.24±591.63</td>
<td>278.27±26.25</td>
<td>92.03±7±6.79</td>
<td>439.53±35.73</td>
<td>103.53±8.41</td>
<td>103.53±8.41</td>
</tr>
<tr>
<td>FP3(60)+CPT-11</td>
<td>47241.82±7656.55</td>
<td>2189.25±354.11</td>
<td>928.78±112.85</td>
<td>2920.67±337.46</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Ang2</td>
<td>5928.4±1140.08</td>
<td>123.75±23.79</td>
<td>17.86±3.43</td>
<td>18.76±0.82</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Data were presented as mean ± SD. Abbreviations: n.d.: No detect; Ang: angiopoietin.
Optimizing FP3 dosage based on vascular normalization window

shown somewhat higher in 15 mg/kg FP3 compared with 7.5 mg/kg FP3 group despite of no statistical significance, possibly indicating a higher degree of vascular normalization than the latter. Therefore, by exploring the potential relationship between the drug responses and serum Ang1/Ang2 expressions, we discovered the potential answer to explain why the 15 mg/kg FP3 showed the best anti-growth efficacy in CPT-11 combined therapy groups.

This study demonstrated the role of vascular normalization in anti-VEGF therapy combined with chemotherapeutic agents. The optimal dosage regimen for FP3 in combination with CPT-11 was discovered. The ratio of Ang-1/Ang-2 was demonstrated as an effective surrogate maker for vascular normalization, although further confirmations are needed. More effective predictive biomarkers for vascular normalization need to be further discovered.

Acknowledgements
This work was partially supported by National Science and Technology Major Project of China (Grant No. 2013ZX09506015), National Natural Science Foundation of China (Grant No. 81272676), National Natural Science Foundation of China (Grant No. 81374014), Natural Science Foundation of Zhejiang Province (Grant No. LY15H160012), Natural Science Foundation of Zhejiang Province (Grant No. LY15H160026) and Medical and Healthy Science and Technology Projects of Zhejiang Province (Grant No. 2013KYA228).

Disclosure of conflict of interest
None.

Address correspondence to: Lisong Teng, Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, P. R. China. Tel: +86 571 8706 8873; +86 136 6667 6918; Fax: +86 571 8723 6628; E-mail: lsteng@zju.edu.cn

References
Optimizing FP3 dosage based on vascular normalization window

Optimizing FP3 dosage based on vascular normalization window

Supplementary Figure 1. Mice body weight changes in multistep dosages of FP3 combined with CPT-11.