Original Article

Analysis on prognostic factors of patients with ruptured intracranial aneurysms

Shiqiang Qin, Xiaoyan Sun, Peiquan Hui, Jinlei Li, Zengwu Wang

Neurosurgery of Weifang People’s Hospital, Weifang 261041, Shandong, China

Received September 14, 2016; Accepted November 8, 2016; Epub January 15, 2017; Published January 30, 2017

Abstract: Background: Intracranial aneurysm (IA) is a common vascular disease which causes neoplastic hyperplasia of cerebral vessels. It is very important to study relevant factors that influence the prognosis of patients with ruptured intracranial aneurysm to guide the clinical treatment of IA. Methods: This study made a retrospective analysis on data of 580 patients with ruptured IA. To screen risk factors that related to the prognosis of ruptured IA, univariate analysis of variance by χ² test or Wilcoxon test, and multivariable logistic by multiple logistic regression model were carried out. According to the Glasgow Outcome Scale (GOS) scored, the surgical outcomes were also evaluated. Results: The univariate analysis results showed that Age, headache symptoms, Hunt-Hess classification, onset time of surgery, and surgical approach were the risk factors related to the prognosis of patients with ruptured IA. Multivariable logistic regression analysis results showed that the age (P=0.021), Hunt-Hess classification (P=0.002), Onset time of surgery (P=0.019) and surgical approach (P≤0.003) were the independent risk factors. Conclusions: The ultimate outcome of the patients with ruptured intracranial aneurysm depend on clinical judgement including accurate comprehensive analysis, the best surgical time, the right surgical method.

Keywords: Ruptured intracranial aneurysm, risk factor, prognosis

Introduction

Intracranial aneurysm (IA) is a common vascular disease in which local vessel abnormal change causes neoplastic hyperplasia of cerebral vessels [1-3]. In clinical, spontaneous subarachnoid hemorrhage (SAH) is taken as the initial symptom [4-6]. Its morbidity ranks the third among patients with cerebrovascular accidents, just after cerebral thrombosis and hypertensive cerebral hemorrhage. But its fatality rate and disability rate are very high [7, 8]. According to the latest research report of Mayo Clinic in 2009, the occurrence rate of unruptured aneurysms is about 2% while the annual morbidity of subarachnoid hemorrhage caused by intracranial aneurysm rupture is about 60~100/100 thousand people.

SAH may result in various pathological changes including cerebral vasospasm, cerebral edema, cerebral infarction and hydrocephalus and the fatality rate is as high as 25%–60%. If not treated well at the first time of hemorrhage, 40% of survivors [9] may have the risk of re-hemorrhage in 3 weeks and the mortality and disability rate of re-hemorrhage will be as high as 80% [10, 11], seriously threatening patients’ life. The curative effects of patients with ruptured intracranial aneurysms are influenced by onset severity of patient’s condition, timing of treatment, treatment methods, etc [12-16].

Surgical treatment of intracranial aneurysm includes two strategies: one is arterial aneurysm clipping operation. The other is endovascular intervention. The former one is a classic and traditional surgery, which has been regarded as “golden standard” for treating intracranial aneurysm in recent decades [17], while endovascular intervention is a new technology that has been developed in recent 20 years. In recent years, microsurgery clipping and endovascular intervention have been developed and improved continuously, however which one is optimal in safety and effectiveness has not been determined yet.

Therefore, it is very important to study relevant factors that influence the prognosis of patients...
with ruptured intracranial aneurysm to predict the development of patients' condition. This study made a retrospective analysis on clinical medical records of 580 patients with ruptured intracranial aneurysms that had been hospitalized in neurosurgery of Weifang People's Hospital and studied prognosis and relevant factors of patients with ruptured intracranial aneurysms to determine relevant factors that may influence prognosis, so as to instruct clinical work and improve clinical rescue level.

Materials and methods

Study objects

580 patients with ruptured intracranial aneurysms that had been hospitalized in neurosurgery of Weifang People's Hospital and had received operative treatment from January 2007 to July 2013 were taken as study objects, of which, there were 239 male cases, 341 female cases; 52 cases younger than 40 years old, 154 cases 40–49 years old, 186 cases 50–59 years old and 188 cases older than 60 years old; 395 cases received craniotomy clipping operation and 185 cases received intra-vascular interventional operation; 71 cases died after surgery.

Glasgow outcome scale (GOS)

Scores of treatment finality were taken as clinical prognosis evaluation indexes and GOS1–2 was defined as poor prognosis, 3–5 points as good prognosis. Inclusion criteria: (1) Patients who were checked by digital subtraction angiography (DSA) and (or) CT angiography (CTA) and were diagnosed with subarachnoid hemorrhage caused by ruptured intracranial aneurysm; (2) Patients who had typical clinical manifestation and signs of subarachnoid hemorrhage; (3) Patients who were performed craniotomy clipping or endovascular interventional surgery [17]. Exclusion criteria: (1) Patients who were hospitalized due to trauma; (2) Patients who were diagnosed with intracranial aneurysm but not received surgical treatment; (3) Patients who received two kinds of surgery; (4) Patients who were diagnosed with intracranial

Table 1. Analysis on Single Factors that Influence Intracranial Aneurysm Patients' Diagnosis

<table>
<thead>
<tr>
<th>Influencing factors</th>
<th>Poor prognosis</th>
<th>Good prognosis</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cases (%)</td>
<td>Cases (%)</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>40 (16.7)</td>
<td>199 (83.3)</td>
<td>0.474</td>
</tr>
<tr>
<td>Female</td>
<td>65 (19.1)</td>
<td>276 (80.9)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤40 years</td>
<td>8 (15.4)</td>
<td>44 (84.6)</td>
<td>0.029</td>
</tr>
<tr>
<td>40–49 years</td>
<td>23 (14.9)</td>
<td>131 (85.1)</td>
<td></td>
</tr>
<tr>
<td>50–59 years</td>
<td>25 (13.4)</td>
<td>161 (86.6)</td>
<td></td>
</tr>
<tr>
<td>≥60 years</td>
<td>44 (23.4)</td>
<td>144 (76.6)</td>
<td></td>
</tr>
<tr>
<td>Aneurysmal neck size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wide (1)</td>
<td>67 (17.8)</td>
<td>309 (82.2)</td>
<td>0.810</td>
</tr>
<tr>
<td>Narrow (2)</td>
<td>19 (20.0)</td>
<td>76 (80.0)</td>
<td></td>
</tr>
<tr>
<td>Unknown (3)</td>
<td>17 (16.5)</td>
<td>86 (83.5)</td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>79 (15.7)</td>
<td>424 (84.3)</td>
<td>0.000</td>
</tr>
<tr>
<td>No</td>
<td>26 (33.8)</td>
<td>51 (66.2)</td>
<td></td>
</tr>
<tr>
<td>Hunt-Hess</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level I</td>
<td>9 (8.8)</td>
<td>93 (91.2)</td>
<td>0.000</td>
</tr>
<tr>
<td>Level II</td>
<td>31 (13.5)</td>
<td>199 (86.5)</td>
<td></td>
</tr>
<tr>
<td>Level III</td>
<td>42 (22.5)</td>
<td>145 (77.5)</td>
<td></td>
</tr>
<tr>
<td>Level IV</td>
<td>16 (34.8)</td>
<td>30 (65.2)</td>
<td></td>
</tr>
<tr>
<td>Level V</td>
<td>7 (63.6)</td>
<td>4 (37.4)</td>
<td></td>
</tr>
<tr>
<td>Surgical timing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–3 d</td>
<td>80 (22.3)</td>
<td>278 (77.7)</td>
<td>0.002</td>
</tr>
<tr>
<td>4–10 d</td>
<td>16 (15.5)</td>
<td>87 (84.5)</td>
<td></td>
</tr>
<tr>
<td>11–14 d</td>
<td>3 (7.1)</td>
<td>39 (92.9)</td>
<td></td>
</tr>
<tr>
<td>>14 d</td>
<td>5 (6.8)</td>
<td>69 (93.2)</td>
<td></td>
</tr>
<tr>
<td>Surgical way</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Craniotomy clipping</td>
<td>82 (20.8)</td>
<td>313 (79.2)</td>
<td>0.015</td>
</tr>
<tr>
<td>Endovascular intervention</td>
<td>23 (12.4)</td>
<td>162 (87.6)</td>
<td></td>
</tr>
</tbody>
</table>
aneurysm and received surgery but with unruptured intracranial aneurysm.

Statistical methods

SPSS13.0 statistical software was adopted and usage rate and constituent ratio were used to describe materials. Single factor analysis was first conducted on factors that may influence the prognosis of patients with ruptured intracranial aneurysm and \(\chi^2 \) and rank sum tests were adopted. Factors that had statistical significance in the single factor analysis were analyzed further by multiple logistic regression model and \(P < 0.05 \) was statistically significant.

Results

Analysis on single factors that influence patients’ diagnosis

Among 580 patients, 471 patients had a good prognosis and the good prognosis rate was 81.2%. Single factor analysis results indicated that patients’ age, headache symptom, Hunt-Hess grading, surgical timing and surgical way are influencing factors that influence prognosis of patients with intracranial aneurysms and the difference had statistical significance \((P < 0.05) \); patients’ gender and aneurysm size are not influencing factors that influence patients’ prognosis \((P > 0.05) \), Table 1).

Multiple logistic regression analysis on factors influencing patients’ prognosis

Five factors with statistical significance in signal factor analysis were taken out for multiple factor Logistic regression analysis and the results indicated that patients’ age \((P = 0.021) \), Hunt-Hess grading \((P = 0.002) \), surgical timing \((P = 0.019) \) and surgical way \((P = 0.003) \) are independent risk factors that influence prognosis; headache symptom at admission is not an independent risk factor that influence prognosis and the difference had no statistical significance \((P > 0.05) \), Table 2).

Discussions

In this study, 580 patients with ruptured intracranial aneurysms that had been hospitalized in neurosurgery of Weifang People’s Hospital and had received operative treatment from January 2007 to July 2013 were taken as study objects and the big sample size is the advantage of this study. By reading relevant literatures, it can be found that there are always disputes about the relation of age and prognosis. By analyzing cases of this group, it indicated that age is the independent risk factor that influences the prognosis of patients with ruptured intracranial aneurysm. Single factor analysis found that the favorable prognosis of patients younger than 40 years old, 40~49 years old, 50~59 years old had no big difference \((84.6\%, 85.1\% \text{ and } 86.6\%) \), while the favorable prognosis of patients older than 60 years old was only 76.6%. Shirao et al. [18] found that the state of consciousness on admission was evidently related to age. CT examination found that the older the patient is, the bigger the SAH volume will be and the occurrence rate of intraventricular hemorrhage and hydrocephalus increases with aging. Symptomatic vasospasm is more common in the older group, confirming that age is the independent risk factor affecting prognosis. The reason may be due to arterial sclerosis: the vascular elasticity and adaptability decrease with age and their reaction to vascular constriction factors also decrease [19]. With age, the occurrence rate of diabetes, hypertension, cerebrovascular disease, and cardiopulmonary dysfunction disease also increases and these are all important factors that influence patients’ prognosis.

<table>
<thead>
<tr>
<th>Influencing factor</th>
<th>Regression coefficient</th>
<th>Standard error</th>
<th>OR</th>
<th>P value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients’ age</td>
<td>-1.243</td>
<td>0.512</td>
<td>0.329</td>
<td>0.021</td>
<td>0.144-0.735</td>
</tr>
<tr>
<td>Surgical timing</td>
<td>-15.54</td>
<td>0.643</td>
<td>1.826</td>
<td>0.019</td>
<td>1.521-2.103</td>
</tr>
<tr>
<td>Hunt-Hess</td>
<td>-20.417</td>
<td>0.939</td>
<td>1.358</td>
<td>0.002</td>
<td>2.531-5.622</td>
</tr>
<tr>
<td>Headache</td>
<td>-0.478</td>
<td>0.326</td>
<td>0.614</td>
<td>1.534</td>
<td>0.328-1.151</td>
</tr>
<tr>
<td>Surgical way</td>
<td>-0.849</td>
<td>0.283</td>
<td>0.428</td>
<td>0.003</td>
<td>0.246-0.745</td>
</tr>
<tr>
<td>Constant</td>
<td>1.054</td>
<td>0.907</td>
<td>2.869</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The longer the surgical time to the onset time, the higher the favorable rate of prognosis will be. The favorable rates of prognosis at 11–14 d and >14 d are basically the same and this is different from the point that early surgery should be conducted [23]. The reason may be that the treatment habits of this department for severe patients are that surgery should be conducted as soon as possible after admission, but for patients with lighter disease condition, surgery may be conducted after the disease condition is steady. In the early operative treatment, poor preoperative condition, mechanical stimulation and anesthesia of surgery and will further worsen the brain injury and exacerbate the disease in a short time, which may influence the short-term prognosis of patients.

For middle-stage and later-stage surgery, patients’ disease conditions are relatively stable and the adverse impact caused by SAH will be lightened, so surgery during this period will cause little injury to the brain and the surgical safety is evidently increased. Therefore, middle-stage and later-stage surgery have better effects. But considering that rehaemorrhagia may cause death, so as long as patients’ basic conditions are permitted, early operative treatment should be conducted, especially patients with preoperative Hunt-Hess level I and II. For patients with Hunt-Hess III, IV, if their clinical conditions are also steady, they can also consider early operative treatment. Treatment plans for patient with level V should be conducted carefully, because no matter surgery or not, the results are neither ideal.

Currently, the most effective methods for treating intracranial aneurysm are neurosurgical clipping and endovascular intervention [24]. Intraoperative tumor rupture is the biggest risk...
of neurosurgical clipping and it is the main rea-
son that results in surgical failure, patients’ dis-
ability and death [25-27]. With the develop-
ment and innovation of endovascular interven-
tion and various intervention materials and diver-
sification of intracranial aneurysm inter-
vention ways, endovascular intervention is
being widely accepted and approved by its micro-
invasiveness, low disability rate and low fatality rate [28]. But six-year follow-up data
published by ISAT showed that the arterial
aneurysm complete clipping rate of neurosurgi-
cal clipping was slightly higher than that of
endovascular clipping.

This research showed that the favorable prog-
nosis rate of patients treated by neurosurgical
clipping is 79.2% and that of patients treated
by intravascular intervention is 87.6%, and the
difference had statistical significance, indicat-
ing that both operative ways have a certain
curative effect but the prognosis effect of in-
vascular intervention is better. To sum up, neu-
rosurgical clipping and intravascular interven-
tion both have an evident effect on treating
intracranial aneurysm, but intravascular inter-
vention has a better curative effect, with a
favorable prognosis rate 2.336 times as that of
the neurosurgical clipping. Therefore, if the dis-
ease condition is allowable, endovascular
intervention is a better choice. This study indi-
cated that: for treating patients with ruptured
intracranial aneurysm, first analyze their dis-
ease condition comprehensively, then deter-
mine the time and way of surgery, so as to
improve the treatment effect and improve
patients’ survival quality.

This study still has some shortcomings: (1) The
samples are only from one hospital, so there
are some biases in hospital. (2) This study is a
retrospective analysis, so it is unable to deter-
mine the reasons and standards that patients
chose these two ways of surgery. The selection
of operative ways are mostly decided by doc-
tors based on disease condition of patients
and after discussion with family members,
therefore, the standard of choosing the operative way needs further study; besides, this
study may have lost some information which
may not be induced into the influencing factors
with statistical significance, so it needs for-
ward-looking multi-center control study, unify
the inclusion standard and end point observa-
tion indexes and have long-term follow-up vis-
its, only by doing these, a more accurate prog-
nosis model can be established.

Disclosure of conflict of interest

None.

Address correspondence to: Zengwu Wang, Neuro-
surgery of Weifang People’s Hospital, No 151, Gu-
angwen Street, Weifang 261041, Shandong, China.
Tel: 0536-8192455; 0536-8232271; E-mail: wang-
wuzeng501@sina.com

References

M and Decoene C. Selective microsurgical
 treatment of giant intracranial aneurysms.
Neurochirurgie 2016; 62: 30-37.
MRI and intracranial aneurysms. J Neurointerv
intracranial aneurysms: a review. World Neuro-
[4] James RF, Kramer DR, Aljuboori ZS, Parikh G,
Adams SW, Eaton JC, Abou Al-Shaar H, Badjatia
N, Mack WJ and Simard JM. Novel treatments
in neuroprotection for aneurysmal subarach-
noid hemorrhage. Curr Treat Options Neurol
2016; 18: 38.
Thrombectomy for ischemic stroke: meta-anal-
yses of recurrent strokes, vasospasms, and
subarachnoid hemorrhages. J Neurol 2016;
[Epub ahead of print].
[6] Achrol AS and Steinberg GK. Personalized
medicine in cerebrovascular neurosurgery:
precision neurosurgical management of cere-
bral aneurysms and subarachnoid hemor-
[7] Hohlrieder M, Spiegel M, Hinterhoezl J,
Engelhardt K, Pfaueter B, Koppf A, Ulmer H,
Waldenberger P, Mohsenipour I and Schmut-
zhard E. Cerebral vasospasm and ischaemic
infarction in clipped and coiled intracranial an-
eurysm patients. Eur J Neurol 2002; 9: 389-
399.
[8] Dehdashti AR, Mermillod B, Rufenacht DA,
Reverdin A and de Tribolet N. Does treatment
modality of intracranial ruptured aneurysms
influence the incidence of cerebral vasospasm
and clinical outcome? Cerebrovasc Dis 2004;
17: 53-60.
[9] Zhao L, Zhang L, Zhang X, Li Z, Tian L and
Wang YX. An analysis of 1256 cases of spo-
radic ruptured cerebral aneurysm in a single
Risk factor in ruptured intracranial aneurysm

