Review Article
The association between epidermal growth factor and the treatment of deep second degree burn wounds: a meta-analysis

Sheng Bi, Shirong Li, Xi Yuan, Linlin Chai, Chuan Cao

Department of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, Chongqing 400038, PR China

Received April 21, 2016; Accepted November 26, 2016; Epub July 15, 2017; Published July 30, 2017

Abstract: Objective: The relationship between epidermal growth factor (EGF) therapy and the treatment of deep second degree burn wounds is still conflicting. We therefore conducted a meta-analysis to summarize the evidence from epidemiological studies. Methods: PubMed, Web of Science, Wanfang databases, Embase, and Cochrane library were used to search the relevant articles up to October 2015. We analyzed dichotomous variables by estimating odds ratios (OR) with their 95% confidence interval (CI) and continuous variables using the weighted mean difference (WMD) with the 95% CI. The random effect model (REM) was used to combine the results. The outcome measures included healing time (HT), wounds healing speed (WHS), and scar index (SI). Result: Nine articles were included in the meta-analysis. These studies involved a total of 441 patients. The results indicate that epidermal growth factor (EGF) therapy were significantly lower in epidermal growth factor (EGF) therapy than in other therapy (HT: WMD = -0.70, 95% CI = -0.87, -0.53), (WHS: WMD = 1.13, 95% CI = 0.94, 1.33), and (SI: WMD = -1.01, 95% CI = -1.21, -0.81). Conclusion: Compared with other therapy, epidermal growth factor therapy is generally safer and more reliable for patients with deep second degree burn wounds.

Keywords: Epidermal growth factor, deep second degree burn wounds, meta-analysis

Introduction

Burns are among the most common injuries in modern life [1]. Without proper treatment, burn surface area and depth may worsen and become life threatening over time [2]. So it is very important to focus on improving the overall survival rate and improving the quality of life [3]. Although many advances have been made to treat burn injuries, the consensus on the best treatment to hasten healing has not been reached [2].

Up to date, epidemiologic studies have reported the relationship between epidermal growth factor (EGF) therapy and the treatment of deep second degree burn wounds. However, due to small sample sizes, most studies were not adequately powered to detect the effect of EGF therapy on deep second degree burn wounds. Thus, in order to provide the latest and more convincing evidence, we systematically reviewed the current available epidemiologic studies to conduct the meta-analysis.

Methods

Literature search

The electronic databases of PubMed, Web of Science, Wanfang databases Embase and Cochrane library were searched to identify eligible English and Chinese language publications (up to October, 2015). The following text and key words were used in the search: “epidermal growth factor therapy” or “therapy” in combination with “deep second degree burn wounds”. Logical combinations of these and related terms were used to maximize sensitivity. Additional relevant articles were identified by searching the references of eligible articles.

Inclusion criteria

The inclusion criteria for this meta-analysis were as follows: (1) reporting as a retrospective study or prospective study or randomized controlled trial; (2) comparison of epidermal growth factor (EGF) therapy with other therapy...
Association between EGF and deep second degree burn wounds

Exclusion criteria

The exclusion criteria for this meta-analysis were as follows: (1) reviews; (2) the abovementioned outcomes of interest were not reported; (3) it was impossible to extract the appropriate data from the published results.

When the same institution reported more than once, the most recent publication was included. Two investigators carefully reviewed all identified studies independently to determine whether an individual study was eligible for inclusion criteria in this meta-analysis. Any disagreements were resolved by discussion between the two reviewers.

Quality assessment

The quality of studies was examined and controlled in accordance with checklists of Preferred Reporting Items for Systematic reviews and Meta-Analyses for randomized trials (PRISMA).

Statistical analysis

We analyzed dichotomous variables by estimating odds ratios (OR) with their 95% confidence interval (95% CI) and continuous variables using the weighted mean difference (WMD) with the 95% CI between EGF therapy and the treatment of deep second degree burn wounds. Random-effects model was used to combine the pooled effect, which considers both within-study and between-study variation [6]. The \(I^2 \) was used to assess heterogeneity, and \(I^2 \) values of 0, 25, 50 and 75% represent no, low, moderate and high heterogeneity [7], respectively. Meta-regression with restricted maximum likelihood estimation was performed to assess the potentially important covariates that might exert substantial impact on between-study heterogeneity [8]. Sensitivity analysis was conducted to describe how robust the pooled estimator is to removal of individual studies. Publication bias was evaluated using Egger regression asymmetry test [9]. All statistical analyses were conducted with STATA version 10.0 (StataCorp LP, College Station, Texas, USA). Two-tailed \(p \)-value \(\leq 0.05 \) was accepted as statistically significant.

Results

Search results and study characteristics

In total, the electronic database searches identified 158 articles from PubMed and 243 arti-
Association between EGF and deep second degree burn wounds

Table 1. Characteristics of included studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>N1</th>
<th>N2</th>
<th>Quality score</th>
<th>Case Mean</th>
<th>Case SD</th>
<th>Control Mean</th>
<th>Control SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wounds healing speed (WHS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li et al.</td>
<td>2004</td>
<td>30</td>
<td>30</td>
<td>7</td>
<td>62.31</td>
<td>3.46</td>
<td>52.08</td>
<td>2.7</td>
</tr>
<tr>
<td>Liang et al.</td>
<td>2006</td>
<td>60</td>
<td>60</td>
<td>7</td>
<td>75.93</td>
<td>22.02</td>
<td>62.26</td>
<td>19.25</td>
</tr>
<tr>
<td>Luo et al.</td>
<td>2007</td>
<td>28</td>
<td>28</td>
<td>6</td>
<td>79.93</td>
<td>21.02</td>
<td>60.26</td>
<td>18.25</td>
</tr>
<tr>
<td>Chen et al.</td>
<td>2009</td>
<td>60</td>
<td>60</td>
<td>7</td>
<td>88.93</td>
<td>20.06</td>
<td>66.25</td>
<td>19.78</td>
</tr>
<tr>
<td>Luo et al.</td>
<td>2013</td>
<td>30</td>
<td>30</td>
<td>8</td>
<td>83.78</td>
<td>9.05</td>
<td>62.24</td>
<td>7.97</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>2002</td>
<td>44</td>
<td>44</td>
<td>7</td>
<td>81.36</td>
<td>2.71</td>
<td>69.66</td>
<td>25.18</td>
</tr>
<tr>
<td>Healing time (HT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li et al.</td>
<td>2004</td>
<td>30</td>
<td>30</td>
<td>7</td>
<td>18.68</td>
<td>20.9</td>
<td>24.15</td>
<td>2.96</td>
</tr>
<tr>
<td>Liang et al.</td>
<td>2006</td>
<td>60</td>
<td>60</td>
<td>7</td>
<td>17.12</td>
<td>3.69</td>
<td>21.06</td>
<td>3.87</td>
</tr>
<tr>
<td>Luo et al.</td>
<td>2007</td>
<td>28</td>
<td>28</td>
<td>6</td>
<td>15.12</td>
<td>3.19</td>
<td>19.06</td>
<td>3.07</td>
</tr>
<tr>
<td>Chen et al.</td>
<td>2009</td>
<td>60</td>
<td>60</td>
<td>7</td>
<td>14.7</td>
<td>2.4</td>
<td>16.8</td>
<td>3.5</td>
</tr>
<tr>
<td>Luo et al.</td>
<td>2013</td>
<td>30</td>
<td>30</td>
<td>8</td>
<td>16.15</td>
<td>3.63</td>
<td>22.89</td>
<td>5.17</td>
</tr>
<tr>
<td>Guo et al.</td>
<td>2010</td>
<td>20</td>
<td>21</td>
<td>7</td>
<td>26.11</td>
<td>2.97</td>
<td>29.13</td>
<td>4.99</td>
</tr>
<tr>
<td>Liao et al.</td>
<td>2003</td>
<td>21</td>
<td>21</td>
<td>7</td>
<td>20.1</td>
<td>3.4</td>
<td>17.2</td>
<td>3.12</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>2002</td>
<td>44</td>
<td>44</td>
<td>7</td>
<td>16.82</td>
<td>2.99</td>
<td>18.23</td>
<td>3.17</td>
</tr>
<tr>
<td>Scar index (SI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liang et al.</td>
<td>2006</td>
<td>60</td>
<td>60</td>
<td>7</td>
<td>8.12</td>
<td>1.47</td>
<td>9.79</td>
<td>1.85</td>
</tr>
<tr>
<td>Luo et al.</td>
<td>2007</td>
<td>28</td>
<td>28</td>
<td>6</td>
<td>7.92</td>
<td>1.57</td>
<td>9.18</td>
<td>1.88</td>
</tr>
<tr>
<td>Chen et al.</td>
<td>2009</td>
<td>60</td>
<td>60</td>
<td>7</td>
<td>6.53</td>
<td>1.66</td>
<td>9.29</td>
<td>2.93</td>
</tr>
<tr>
<td>Luo et al.</td>
<td>2013</td>
<td>30</td>
<td>30</td>
<td>7</td>
<td>7.17</td>
<td>1.45</td>
<td>9.19</td>
<td>2.32</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>2003</td>
<td>37</td>
<td>37</td>
<td>7</td>
<td>7.19</td>
<td>1.67</td>
<td>8.92</td>
<td>1.78</td>
</tr>
</tbody>
</table>

SD: Standard deviation; N1: Number for case; N2: Number for control.

EGF therapy group compared with the other therapy group (WMD = 1.13, 95% CI = 0.94, 1.33, I² = 91.1%) (Figure 3). The scar index (SI) in EGF therapy group was also significant lower than the other therapy group (WMD = -1.01, 95% CI = -1.21, -0.81, I² = 0%) (Figure 4).

Meta-regression and sensitivity analyses

Significant heterogeneity existed, mainly in comparison of healing time and wounds healing speed. Univariate meta-regression with the covariates of publication year, location where the study conducted and number of participants was performed. However, no significant findings were found in the above-mentioned analysis. A sensitivity analysis was conducted to assess the influence of each study, by sequential omission of each eligible study. The results showed that the results were not affected by any single study.

Publication bias

Egger regression asymmetry test and funnel plot (Figure 5) showed that no evidence of significant publication bias between EGF therapy and the treatment of deep second degree burn wounds, when compared the HT, WHS, and SI.

Discussion

Unfortunately burns are a common occurrence, leading to scarring or death. Burns can be classified into first, second and third degrees, with first-degree burns being limited to the epidermis, second-degree burns involving the epidermis and part of the dermis, and third-degree burns destroying the epidermis and all dermis [19, 20]. Serious injuries to the skin such as burns require immediate treatment to rebuild the barrier function [21]. Therefore, accelera-
Association between EGF and deep second degree burn wounds

![Figure 2. Comparison of epidermal growth factor therapy group and other therapy group with respect to healing time.](image1)

![Figure 3. Comparison of epidermal growth factor therapy group and other therapy group with respect to wounds healing speed.](image2)

To the best of our knowledge, this is the first comprehensive meta-analysis to compare epidermal growth factor (EGF) therapy and other therapy for treatment of deep second degree burn wounds. The results of this study show that EGF therapy is superior to other therapy in...
Association between EGF and deep second degree burn wounds

Figure 4. Comparison of epidermal growth factor therapy group and other therapy group with respect to scar index.

Figure 5. Funnel plot for the analysis of publication bias with respect to healing time.

In summary, this meta-analysis indicates that compared with other therapy, epidermal growth factor therapy is generally safer and more reliable for patients with deep second degree burn wounds.

Acknowledgements

The National Youth Science Foundation: Rac1 protein regulation of epidermal stem cells to promote wound healing and mechanism (No. 81301639).

Disclosure of conflict of interest

None.

Address correspondence to: Linlin Chai, Department of Plastic and Reconstructive Surgery, Southwest Hospital, Third Military Medical University, 29 Gao-
tanyan Main Street, Shapingba District, Chongqing 400085, PR China. Tel: +86 23 68765355; Fax: +86 23 65410744; E-mail: linlinchai@yeah.net

References

