Case Report
Multiple brain metastases from nasopharyngeal carcinoma: a case report and literatures review

Min Deng1, Yong Jiang2, Xiaojuan Zhou1, Xue Tian1, Youling Gong1

1Department of Thoracic Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China; 2Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, PR China

Received July 19, 2016; Accepted September 15, 2016; Epub November 15, 2016; Published November 30, 2016

Abstract: Although direct intracranial invasion is common in patients with nasopharyngeal carcinoma (NPC), multiple brain metastases from NPC is extremely rare. In this case, the clinical features, imaging, pathological findings, treatment outcomes, prognosis of an NPC patient with brain metastasis are described. Combining the clinical symptoms with auxiliary examination, the disease more likely to be originated from lung at first. Multiple biopsies confirmed that the primary lesions was nasopharynx finally. This is the first case of a patient with brain and lung metastasis from NPC that mimicked as a lung cancer. We also retrospectively reviewed the medical records of about 3200 patients with NPC treated in our hospital during 30 years and review relevant literatures from PUB-MED database. In summary, multiple brain metastases from NPC is extremely rare, and radiotherapy of brain lesions is an important auxiliary treatment besides the systematic therapy. The ultimate survival time depends on the effects from the chemotherapy and the control of extra-cranial disease.

Keywords: Nasopharyngeal carcinoma, multiple brain metastasis, lung metastasis, immunohistochemistry, treatment, prognosis

Introduction
Nasopharyngeal carcinoma (NPC) is endemic in Southeast Asia compared with Western countries. During the past decade, the incidence of NPC is gradually declining, even in some endemic regions, and mortality from the disease has fallen substantially [1]. Race, genetics, environment and Epstein-Barr virus (EBV) all play a role in the pathogenesis of NPC [2]. NPC has a propensity to cause distant metastasis; the most common sites of distant metastasis are the bone, lung and liver [3]. Maximizing the local control and minimizing the risk of distant metastasis and late complications should be the main objectives in clinical work [4]. The presence of hepatic metastases, short metastasis free interval, and older age at presentation significantly predicted short survival after the diagnosis of distant metastasis from NPC [5]. Because of nasopharyngeal anatomical location, NPC with direct extension to the brain is not rare, but true brain metastasis of NPC is exceedingly uncommon [6-9]. The prognosis of NPC patients with brain metastasis is poor, which was depended on age, surgical excision and synchronous metastases, the survival generally does not exceed 6 months [10]. Here, we reported a case of brain and lung metastasis from NPC which only appeared with the symptoms of thoracic diseases.

Case report
A 49-year-old Chinese man was admitted to West China Hospital of Sichuan University, complaining of cough and expectoration for more than 1 months, and got deteriorated with accompanying bloody aputum and emptysis which was not alleviated with anti-inflammation treatment. None of positive signs were found upon physical examinations. Decreased breathing sound was found in his left lung. Chest computed tomography (CT) showed soft tissues at the right hilum and left lower lobe
Multiple brain metastases from NPC: case report and literature review

with enlarged hilum and mediastinum lymph nodes (Figure 1). The head magnetic resonance imaging (MRI) was performed, which showed multiple ring-enhancement lesions at left occipital lobe and bilateral parietal and frontal lobe (Figure 2). However, partial views of head MRI revealed incrassate tissue of right pharyngeal recess. In order to define the position and scope of lesion, the nasopharyngeal MRI was performed. It showed right pharyngeal recess disappeared and was covered with soft tissue. Enlarged retropharyngeal space and cervical lymph nodes also can be detected (Figure 3).

Bronchoscopy detected a strip of neoplasm at the orifice of the right middle bronchus. Immunohistochemical staining of tumor cells demonstrated: CD5/6(+), P63(+), P40(+), CK7(-), TTF-1(-), ALK-V(-), ROS-1(-). The pharyngorhinoscopic and needle biopsy confirmed its neoplastic nature. The Immunohistochemical staining of tumor cells showed CK(-), P63(+), S-100(-), Ki67(+, 40%) in situ hybridization EBER1/2(+), indicating it was the non-keratinizing carcinoma (Figure 4). Then the pathologist confirmed EBER (partial +) in the tissue from the bronchoscopy. From these results, it can be concluded that the primary lesion was nasophary-

Figure 1. Chest computed tomography (CT) showed soft tissues at the right hilum (about 3.8 × 3.6 cm, A: Lung window, B: Mediastinum window) and left lower lobe (about 6.3 × 4.2 cm, C: Lung window, D: Mediastinum window) with enlarged hilum and mediastinum lymph nodes (E, F).
ynx. Finally, the patient was diagnosed with nasopharyngeal non-keratinising squamous carcinoma accompanying with pharyngeal and mediastinum lymph nodes, bilateral lung, multiple brain metastases, T1N1M1b, stage IV [11].

Because that none of symptoms caused by brain metastasis was observed and the performance status of the patient was 2, the chemotherapy with Paclitaxel plus Cisplatin was performed after diagnosis, and the whole brain radiation therapy (WBRT) was scheduled. During chemotherapy process, the patient deteriorated with the thoracic symptoms rapidly and refused further anti-tumor treatment, only received best supportive care, especially hemostatics. The patient finally died 4 months later from the diagnosis of NPC. He died of terminal massive hemoptysis and respiratory failure. Slight neurologic symptoms were observed, but no progressive nasopharyngeal symptoms were observed before his demise.

Figure 2. Head magnetic resonance imaging (MRI) showed multiple ring-enhancement lesions at left occipital lobe and bilateral parietal and frontal lobe (arrows, A, B: Axial views; C-E: Sagittal views; F-I: Coronal views).
Multiple brain metastases from NPC: case report and literature review

Discussion

This is the first case reported a patient with brain and lung metastasis from NPC that mimicked as the lung cancer at first, and multiple biopsies confirmed primary lesions was nasopharynx finally. Sometimes, it is easy to misdiagnose in practice. Missed diagnosis might cause the diseases deteriorated quickly or lead to other serious consequences. In clinical practice, we should keep in mind the possibility of NPC brain and lung metastasis patient only appeared with the symptoms of thoracic diseases.

In order to obtain more insight on incidence, clinical features, natural course, and treatment results of NPC with brain metastasis. We retrospectively reviewed the medical records of about 3200 patients with nasopharyngeal carcinoma treated in our hospital during 30 years (between 1985 and 2015). Patients with direct extension to the brain are excluded. Among them, 6 patients had been identified with brain
Multiple brain metastases from NPC: case report and literature review

Table 1. Brain metastasis from nasopharyngeal carcinoma in our hospital

<table>
<thead>
<tr>
<th>Case</th>
<th>Gender/age</th>
<th>IT</th>
<th>Brain metastasis</th>
<th>Metastasis †</th>
<th>Treatment after brain metastasis</th>
<th>Chemotherapy regime</th>
<th>Treatment response ‡</th>
<th>ST §</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male/62</td>
<td>96</td>
<td>Multiple</td>
<td>None</td>
<td>WBRT, chemotherapy</td>
<td>Cisplatin+5-Fu’4</td>
<td>SD</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Male/48</td>
<td>24</td>
<td>Oligo</td>
<td>Lung, bone</td>
<td>BSC †</td>
<td>None</td>
<td>NA †</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Male/59</td>
<td>84</td>
<td>Multiple</td>
<td>None</td>
<td>Surgery, WBRT, chemotherapy</td>
<td>Paclitaxel+Cisplatin’6</td>
<td>SD</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Female/42</td>
<td>17</td>
<td>Multiple</td>
<td>Lung, thyroid</td>
<td>BSC</td>
<td>None</td>
<td>NA</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Male/43</td>
<td>72</td>
<td>Single</td>
<td>Lung, bone</td>
<td>Gamma knife, chemotherapy</td>
<td>Irinotecan+S-1*8</td>
<td>PR</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td>0</td>
<td>Multiple</td>
<td>Lung, Mediastinum Lymph nodes</td>
<td>Chemotherapy+BSC</td>
<td>Paclitaxel+Cisplatin’2</td>
<td>SD</td>
<td>4</td>
</tr>
</tbody>
</table>

*Interval time between diagnosis of NPC and brain metastases in months; †Systemic metastasis at the time of brain metastasis diagnosis; ‡According to the RESIST criteria [12]; §Survival time after the diagnosis of brain metastases; NA † Not available; BSC Best supportive care.

Table 2. Brain metastasis from nasopharyngeal carcinoma from PUB-MED database

<table>
<thead>
<tr>
<th>Case</th>
<th>Gender/age</th>
<th>IT</th>
<th>Brain metastasis</th>
<th>Metastasis †</th>
<th>Treatment after brain metastasis</th>
<th>Chemotherapy regime</th>
<th>Treatment response ‡</th>
<th>ST §</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liaw [6]</td>
<td>Male/69</td>
<td>0</td>
<td>Multiple</td>
<td>Bone</td>
<td>WBRT+chemotherapy</td>
<td>NA †</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Ozyar [9]</td>
<td>Male/41</td>
<td>45</td>
<td>Single</td>
<td>Lung</td>
<td>Surgery+WBRT</td>
<td>None</td>
<td>SD</td>
<td>NA</td>
</tr>
<tr>
<td>Orit [8]</td>
<td>Male/54</td>
<td>7</td>
<td>Single</td>
<td>Petrous bone</td>
<td>WBRT</td>
<td>None</td>
<td>PD</td>
<td>NA</td>
</tr>
<tr>
<td>Rafee [14]</td>
<td>NA</td>
<td>7</td>
<td>Multiple</td>
<td>Lung</td>
<td>WBRT+chemotherapy</td>
<td>Carboplatin+5-FU’4</td>
<td>PR</td>
<td>NA</td>
</tr>
</tbody>
</table>

*Interval time between diagnosis of NPC and brain metastases in months; †Systemic metastasis at the time of brain metastasis diagnosis; ‡According to the RESIST criteria [12]; §Survival time after the diagnosis of brain metastases; NA † Not available.
metastases is among 0.0-56.0 months, and the median interval time of these patients is 7 months (95% CI 4.2-44.0 months).

Only Ngan et al [7] recorded the patient’s survival time after the diagnosis of brain metastasis, it was 6.0 months. This patient had left occipital lobe metastasis after 2 cycles chemotherapy consisting of vincristine, 5-fluorouracil, cyclophosphamide, and methotrexate which was used to control the lung metastases. Then a neuro-surgery was performed to remove the brain tumor. However, the thoracic disease progressed gradually after the craniotomy. The patient died 6 months later from the diagnosis of brain metastasis. The authors believed that no matter radiotherapy or not, patients with CNS metastasis can achieve good symptom and disease control after surgery, and the ultimate survival depends on the control of extracranial disease after aggressive therapy.

Rafee et al [14] presented a patient achieving good response to the treatment. This patient had leptomeningeal disease and multiple brain metastasis eight months after treatment of primary NPC. Palliative radiotherapy was administered to the spine and brain, and palliative chemotherapy with Carboplatin and 5-FU infusion every three weeks, with Cetuximab weekly and intrathecal Cytarabine infusion every two weeks. After six cycles of treatment, MRI revealed a significant improvement with near resolution of intracranial metastases.

For the first time, we reported a patient with multiple brain and lung metastases from NPC who was admitted with pulmonary symptoms. The lung metastases of this patient were not multiple small nodular lesions in peripheral pulmonary. There were massive lesions in bilateral hilus, so the symptoms of bloody aputum and empytisis were observed at first. As we know, platinum-based chemotherapy is the recommended as the first-line treatment for metastatic NPC, but no standard treatment regimens have been established. Chen et al [15] reported a triplet combination chemotherapy with paclitaxel, cisplatin and 5-FU was an effective and safe option to improve the response rate and prolong OS among these patients. However, Jin et al [16] considered that the three-drug combined regimens brought more toxicity without survival benefits, cisplatin-based doublets may be the more appropriate choice as the first-line treatment for patients.
Multiple brain metastases from NPC: case report and literature review

with metastatic NPC. The platinum-based doublet regimens also could achieve the response rates of 70-80% [1]. Because the performance score of this patient was 2 and accompanied with obvious empysema, we considered the patient might not tolerate a triplet combination chemotherapy and chose TP regimen (Paclitaxel and Cisplatin). During chemotherapy process, the patient deteriorated with the thoracic symptoms rapidly and died of terminal massive hemoptysis and respiratory failure finally.

Conclusion

Based on literatures review, it could be concluded that multiple brain metastases from NPC is extremely rare. Systematic therapy is the main treatment method, and radiotherapy of brain lesions is an important auxiliary treatment method. The prognosis of NPC patients with brain metastasis is poor. The ultimate survival time depends on the reaction to chemotherapy and the control of extra-cranial disease.

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Youling Gong, Department of Thoracic Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Number 37, Quxue Alley, Chengdu 610041, Sichuan, PR China. Tel: 86-28-85423581; Fax: 86-28-85423571; E-mail: gongyouling@hotmail.com

References


