Original Article

Gene expression profiling based on microarray among monoclonal gammopathy of undetermined significance, smoldering multiple myeloma and multiple myeloma

Baotong Feng¹, Butong Ding², Yao Sun³, Nongjian Guo⁴

Departments of ¹Hematology, ³Radiotherapy, Weifang Yidu Central Hospital of Qingzhou, Qingzhou 262500, Shandong, P.R. China; ²Department of Pathology, Ji’nan Central Hospital, Ji’nan 250013, Shandong, P.R. China; ⁴Department of Hematology, Central Hospital of Ji’nan, No.105, Jiefang Road, Lixia District, Ji’nan 250013, Shandong, P.R. China

Received July 4, 2016; Accepted October 29, 2016; Epub January 15, 2017; Published January 30, 2017

Abstract: Multiple myeloma (MM) and smoldering multiple myeloma (SMM) are different types of plasma cell malignancy which are believed to be developed from Monoclonal Gammopathy of Undetermined Significance (MGUS). In this study, to further identify the molecular pathogenesis of these neoplasms of plasma cells, several mRNA expression libraries of MGUS, SM and MM were pooled from GEO & Array Express database. The mRNA expression profiles among these diseases were analyzed for the total differentially expressed genes (DEGs) and most significantly changed DEGs. Moreover, the protein-protein interaction networks (PPIs) for selected DEGs were constructed as well. Based on our result, although there were DEGs shared by MGUS, SM and MM, it is notable that the Top DEGs or the total number of DEGs are different among them, which suggesting a different gene expression pattern for these plasma neoplasms. Our data suggested there were different molecular mechanism or pathogenesis for each disease and may imply novel therapeutic targets.

Keywords: Monoclonal gammopathy of undetermined significance, multiple myeloma, smoldering multiple myeloma, differentially expressed genes, microarray

Introduction

Multiple myeloma (MM) is one type of plasma cell malignancy which is characterized by so-called CRAB criteria (hypercalcemia, renal failure, anemia and bony lesions) [1-3]. Currently, MM has been considered to be developed from the clinically asymptomatic monoclonal gammopathy (AMG), which is a premalignant disorder of plasma-cell proliferation [4-6]. AMG or the earlier phases of plasma cell dyscrasias contains Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM), which are characterized by no myeloma-related organ or tissue injury [4, 6]. It appears that almost all cases of MM are preceded from a premalignant MGUS stage and contains a phase of smoldering multiple myeloma (SMM) without end organ damage [3, 5]. Therefore, presenting with MGUS suggests a life-long risk for the patients to develop MM, or other plasma cell related disorders such as Waldenström’s macroglobulinemia, primary amyloidosis, B-cell lymphoma, or chronic lymphocytic leukemia as well [5]. Based on previous reports, one year after the onset of disease, MGUS may develop into MM or similar lymphoproliferative disorder at a rate about 1-2% and the chance to develop MM increased as the extension of the MGUS duration [7]. Moreover, progression of MM is also age-related since elder MGUS patients demonstrated a higher prevalence of MM [8, 9]. Up to date, retrospective analysis based models had been proposed and used for prediction of progression from MGUS to MM [10].

On the other hand, although MGUS is a major risk factor for patients, majority of MGUS patients still never develop MM in their whole life [5]. According to the criteria of International Myeloma Working Group (IMWS), SMM distin-
Gene expression profiling among MGUS, SMM and MM

GSE6477 SM 9 U133a
E-MTAB-363 MM 9 U133 plus2
E-MTAB-363 MGUS 5 U133 plus2
E-MTAB-363 & GSE6477 Normal 13 U133a & U133 plus2

Table 1. Data source information

Figure 1. DEGs identified from MGUS, SMM and MM.

guished from MGUS by the presentation of
>10% marrow plasmacytosis and/or ≥3 g/dL
serum M-protein but lacking the existence of
CRAB [3]. Compared with MGUS, 10% of the
SMM patients will develop MM in the first 5
years after diagnosis, which indicated an higher
risk than MGUS [11]. However, the molecular
mechanism behind disease progression from
MGUS to MM is still illusive.

In this study, several mRNA expression libraries
of MGUS, SM and MM as well as healthy con-
trols were pooled from GEO & Array Express
database (access number: GSE5900, GSE6477,
E-MTAB-363). Moreover, the microarray data from heathy
cases were included as control (Access No. E-MTAB-363
& GSE6477). The mRNA expres-
sion level among these pack-
ge was analyzed by Affymetrix Human Genome U133a
and Array Affymetrix Human Genome U133 Plus 2.0 Array.
The detail of these data packs, such as data source, disease
types and case numbers were listed as Table 1.

Data analysis

The raw Affymetrix data (.CEL files) recording the original sig-
nal intensity for each probe was obtained from microarray
and normalized by Robust Multi-array Average
(RMA) approach to reduce the mismatch spots in the R-Software (downloaded from https://www.r-project.org/). For different probes which are targeting the same gene, the probe with
maximum value was selected as the final
expression folds to generate the microarray
data.

Identification of differentially expressed genes
(DEGs)

To identify the differentially expressed genes
among the normal controls, MGUS, SMM and
MM patients, the Limmaprogram from R-Soft-
ware was used for data analysis. Briefly, after
setting the false discovery rate (FDR) to 0.05,
the value of expression folds for all samples
was compared via Bayesian linear regression
to obtain the corresponding P-value. The genes
expressed in MGUS, SMM and MM with P<0.05
when comparing with normal control was con-
sidered as differentially expressed genes
(DEGs).

The construction of protein-protein interaction
(PPI) network

The DEGs were first inputted into STRING data based for Protein-Protein Interaction network

Materials and methods

Data collection

The mRNA expression profiles for Monoclonal
Gammopathy of Undetermined Significance
(MGUS), smoldering multiple myeloma (SMM)
and multiple myeloma (MM) were downloaded from GEO &
Array Express database (Access No.: GSE5900, GSE6477,
E-MTAB-363). The mRNA expres-
sion level among these pack-
ge was analyzed by Affymetrix Human Genome U133a
and Array Affymetrix Human Genome U133 Plus 2.0 Array.
The detail of these data packs, such as data source, disease
types and case numbers were listed as Table 1.

Data analysis

The raw Affymetrix data (.CEL files) recording the original sig-
nal intensity for each probe was obtained from microarray
and normalized by Robust Multi-array Average
(RMA) approach to reduce the mismatch spots in the R-Software (downloaded from https://www.r-project.org/). For different probes which are targeting the same gene, the probe with
maximum value was selected as the final
expression folds to generate the microarray
data.

Identification of differentially expressed genes
(DEGs)

To identify the differentially expressed genes
among the normal controls, MGUS, SMM and
MM patients, the Limmaprogram from R-Soft-
ware was used for data analysis. Briefly, after
setting the false discovery rate (FDR) to 0.05,
the value of expression folds for all samples
was compared via Bayesian linear regression
to obtain the corresponding P-value. The genes
expressed in MGUS, SMM and MM with P<0.05
when comparing with normal control was con-
sidered as differentially expressed genes
(DEGs).

The construction of protein-protein interaction
(PPI) network

The DEGs were first inputted into STRING data based for Protein-Protein Interaction network

Materials and methods

Data collection

The mRNA expression profiles for Monoclonal
Gammopathy of Undetermined Significance
(MGUS), smoldering multiple myeloma (SMM)
and multiple myeloma (MM) were downloaded from GEO &
Array Express database (Access No.: GSE5900, GSE6477,
E-MTAB-363). Moreover, the microarray data from healthy
cases were included as control (Access No. E-MTAB-363
& GSE6477). The mRNA expression level among these pack-
ge was analyzed by Affymetrix Human Genome U133a
and Array Affymetrix Human Genome U133 Plus 2.0 Array.
The detail of these data packs, such as data source, disease
types and case numbers were listed as Table 1.

Data analysis

The raw Affymetrix data (.CEL files) recording the original sig-
nal intensity for each probe was obtained from microarray
and normalized by Robust Multi-array Average
(RMA) approach to reduce the mismatch spots in the R-Software (downloaded from https://www.r-project.org/). For different probes which are targeting the same gene, the probe with
maximum value was selected as the final
expression folds to generate the microarray
data.

Identification of differentially expressed genes
(DEGs)

To identify the differentially expressed genes
among the normal controls, MGUS, SMM and
MM patients, the Limmaprogram from R-Soft-
ware was used for data analysis. Briefly, after
setting the false discovery rate (FDR) to 0.05,
the value of expression folds for all samples
was compared via Bayesian linear regression
to obtain the corresponding P-value. The genes
expressed in MGUS, SMM and MM with P<0.05
when comparing with normal control was con-
sidered as differentially expressed genes
(DEGs).

The construction of protein-protein interaction
(PPI) network

The DEGs were first inputted into STRING data based for Protein-Protein Interaction network
Gene expression profiling among MGUS, SMM and MM

Identification of differentially expressed genes (DEGs)

We first set the data from normal healthy people as control group (Access No. E-MTAB-363 & GSE6477, 13 cases) to evaluate the baseline of genes expression. Then data from SM patients groups (Access No. GSE6477, 9 cases), MM patients (Access No. E-MTAB-363, 9 cases) and MGUS patients (Access No. E-MTAB-363, 5 cases) was pooled and compared to the control groups. By comparing the microarray data from these cases, there were totally 254, 351 and 1462 DEGs identified for MGUS, SMM and MM, respectively (Figure 1). The top DEGs (the most differentially expressed genes) for MGUS, SMM and MM were listed as Tables 2-4, respectively.

Moreover, there were 25 DEGs shared by MGUS and SMM (MGUS/SMM), while 146 and 93 DEGs were shared by MGUS/MM and SM/MM, respectively (Figure 1).

Moreover, total of 21 DEGs were shared by all three types of diseases. The official gene names for them are UNC13B, CD19, ST3GAL6, Table 2. Top15 DEGs in MM

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Name</th>
<th>logFC (evaluation marked as ")"</th>
<th>Log (Ctr/MM)</th>
<th>T-value</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGLC1</td>
<td>Immunoglobulin lambda constant 1 (Mcg marker)</td>
<td>11.02798</td>
<td>25.82008</td>
<td>9.38E-14</td>
<td></td>
</tr>
<tr>
<td>CD19</td>
<td>CD19 molecule</td>
<td>6.466287</td>
<td>15.27624</td>
<td>1.73E-10</td>
<td></td>
</tr>
<tr>
<td>LOC96610</td>
<td>BMS1 homolog, ribosome assembly protein (yeast) pseudogene</td>
<td>9.521166</td>
<td>14.36084</td>
<td>4.10E-10</td>
<td></td>
</tr>
<tr>
<td>HLA-DRB6</td>
<td>Major histocompatibility complex, class II, DR beta 6 (pseudogene)</td>
<td>5.29852</td>
<td>13.80206</td>
<td>7.10E-10</td>
<td></td>
</tr>
<tr>
<td>IGLV1-44</td>
<td>Immunoglobulin lambda variable 1-44</td>
<td>9.2309</td>
<td>13.42191</td>
<td>1.04E-09</td>
<td></td>
</tr>
<tr>
<td>BEST1</td>
<td>Bestrophin 1</td>
<td>4.193983</td>
<td>13.11152</td>
<td>1.44E-09</td>
<td></td>
</tr>
<tr>
<td>SLC39A8</td>
<td>Solute carrier family 39 (zinc transporter), member 8</td>
<td>-5.75653</td>
<td>-13.1078</td>
<td>1.45E-09</td>
<td></td>
</tr>
<tr>
<td>XAGE-4</td>
<td>XAGE-4 protein</td>
<td>5.722528</td>
<td>12.91144</td>
<td>1.78E-09</td>
<td></td>
</tr>
<tr>
<td>MCAM</td>
<td>Melanoma cell adhesion molecule</td>
<td>4.852414</td>
<td>12.91111</td>
<td>1.78E-09</td>
<td></td>
</tr>
<tr>
<td>C5orf30</td>
<td>Chromosome 5 open reading frame 30</td>
<td>-6.8773</td>
<td>-12.7924</td>
<td>2.02E-09</td>
<td></td>
</tr>
<tr>
<td>HLA-DPB1</td>
<td>Major histocompatibility complex, class II, DP beta 1</td>
<td>6.958092</td>
<td>12.4308</td>
<td>2.99E-09</td>
<td></td>
</tr>
<tr>
<td>PLAUR</td>
<td>Plasminogen activator, urokinase receptor</td>
<td>5.430296</td>
<td>12.28823</td>
<td>3.50E-09</td>
<td></td>
</tr>
<tr>
<td>HIST2H2BE</td>
<td>Histone cluster 2, H2be</td>
<td>-6.83745</td>
<td>-12.2655</td>
<td>3.59E-09</td>
<td></td>
</tr>
<tr>
<td>MYO1D</td>
<td>Myosin ID</td>
<td>5.887433</td>
<td>12.25336</td>
<td>3.64E-09</td>
<td></td>
</tr>
<tr>
<td>SERBP1</td>
<td>SERPINE1 mRNA binding protein 1</td>
<td>-6.56065</td>
<td>-11.742</td>
<td>6.48E-09</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Top15 DEGs of MGUS

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Name</th>
<th>logFC (evaluation marked as ")"</th>
<th>Log (Ctr/MGUS)</th>
<th>T-value</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDNF</td>
<td>Neuron-derived neurotrophic factor</td>
<td>-8.784605773</td>
<td>-24.9818</td>
<td>6.98E-11</td>
<td></td>
</tr>
<tr>
<td>IGLC1</td>
<td>Immunoglobulin lambda constant 1 (Mcg marker)</td>
<td>9.1781025</td>
<td>17.30071</td>
<td>3.34E-09</td>
<td></td>
</tr>
<tr>
<td>CD19</td>
<td>CD19 molecule</td>
<td>6.112124909</td>
<td>16.11877</td>
<td>6.96E-09</td>
<td></td>
</tr>
<tr>
<td>CCND1</td>
<td>Cyclin D1</td>
<td>-9.582893043</td>
<td>-14.4741</td>
<td>2.12E-08</td>
<td></td>
</tr>
<tr>
<td>FAM49A</td>
<td>Family with sequence similarity 49, member A</td>
<td>-5.831242888</td>
<td>-13.159</td>
<td>5.62E-08</td>
<td></td>
</tr>
<tr>
<td>KCNB2</td>
<td>Potassium large conductance calcium-activated channel, subfamily M, beta member 2</td>
<td>-8.598320019</td>
<td>-12.876</td>
<td>7.01E-08</td>
<td></td>
</tr>
<tr>
<td>LSAMP</td>
<td>Limbic system-associated membrane protein</td>
<td>-7.083451807</td>
<td>-12.6058</td>
<td>8.69E-08</td>
<td></td>
</tr>
<tr>
<td>CXCL12</td>
<td>Chemokine (C-X-C motif) ligand 12</td>
<td>8.521326135</td>
<td>12.42521</td>
<td>1.01E-07</td>
<td></td>
</tr>
<tr>
<td>C12orf75</td>
<td>Chromosome 12 open reading frame 75</td>
<td>6.752004091</td>
<td>12.13187</td>
<td>1.28E-07</td>
<td></td>
</tr>
<tr>
<td>SLC39A8</td>
<td>Solute carrier family 39 (zinc transporter), member 8</td>
<td>-4.203070561</td>
<td>-12.0466</td>
<td>1.38E-07</td>
<td></td>
</tr>
<tr>
<td>ACN9</td>
<td>ACN9 homolog (S. cerevisiae)</td>
<td>5.047266434</td>
<td>11.29034</td>
<td>2.64E-07</td>
<td></td>
</tr>
<tr>
<td>HSH2D</td>
<td>Hematopoietic SH2 domain containing</td>
<td>5.999476449</td>
<td>10.66738</td>
<td>4.64E-07</td>
<td></td>
</tr>
<tr>
<td>KIT</td>
<td>V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog</td>
<td>-7.081336132</td>
<td>-10.4588</td>
<td>5.64E-07</td>
<td></td>
</tr>
<tr>
<td>ACOXL</td>
<td>Acyl-CoA oxidase-like</td>
<td>-5.497865819</td>
<td>-10.4191</td>
<td>5.86E-07</td>
<td></td>
</tr>
<tr>
<td>OGT</td>
<td>O-linked N-acetylglucosamine (GlcNAc) transferase</td>
<td>7.502858743</td>
<td>10.3726</td>
<td>6.12E-07</td>
<td></td>
</tr>
</tbody>
</table>

(PPI) analysis, then PPI network were drawn by Cytoscape (Version 3.20).

Results

Identification of differentially expressed genes (DEGs)

We first set the data from normal healthy people as control group (Access No. E-MTAB-363 & GSE6477, 13 cases) to evaluate the baseline of genes expression. Then data from SM patients groups (Access No. GSE6477, 9 cases), MM patients (Access No. E-MTAB-363, 9 cases) and MGUS patients (Access No. E-MTAB-363, 5 cases) was pooled and compared to the control groups. By comparing the microarray data from these cases, there were totally 254, 351 and 1462 DEGs identified for MGUS, SMM and MM, respectively (Figure 1). The top DEGs (the most differentially expressed genes) for MGUS, SMM and MM were listed as Tables 2-4, respectively.

Moreover, there were 25 DEGs shared by MGUS and SMM (MGUS/SMM), while 146 and 93 DEGs were shared by MGUS/MM and SM/MM, respectively (Figure 1).

Moreover, total of 21 DEGs were shared by all three types of diseases. The official gene names for them are UNC13B, CD19, ST3GAL6,
Gene expression profiling among MGUS, SMM and MM

Table 4. Top 15 DEGs of SMM

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Name</th>
<th>logFC (evaluation marked as "-") Log (Ctr/SM)</th>
<th>T-value</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANKRD12</td>
<td>Ankyrin repeat domain 12</td>
<td>-4.0798</td>
<td>-19.7017</td>
<td>4.91E-13</td>
</tr>
<tr>
<td>RNASE2</td>
<td>Ribonuclease, RNase A family, 2 (liver, eosinophil-derived neurotoxin)</td>
<td>-8.07298</td>
<td>-16.9039</td>
<td>5.71E-12</td>
</tr>
<tr>
<td>CLC</td>
<td>Charcot-Leyden crystal galectin</td>
<td>-8.0734</td>
<td>-16.8206</td>
<td>6.17E-12</td>
</tr>
<tr>
<td>TIAL1</td>
<td>TIA1 cytoplasmic granule-associated RNA binding protein-like 1</td>
<td>-3.6075</td>
<td>-15.9966</td>
<td>1.37E-11</td>
</tr>
<tr>
<td>TJP1</td>
<td>Tight junction protein 1</td>
<td>5.436485</td>
<td>14.64327</td>
<td>5.49E-11</td>
</tr>
<tr>
<td>SMCHD1</td>
<td>Structural maintenance of chromosomes flexible hinge domain containing 1</td>
<td>-3.67077</td>
<td>-11.277</td>
<td>2.99E-09</td>
</tr>
<tr>
<td>PRG3</td>
<td>Proteoglycan 3</td>
<td>-6.12255</td>
<td>-10.275</td>
<td>1.18E-08</td>
</tr>
<tr>
<td>PRG2</td>
<td>Proteoglycan 2, bone marrow (natural killer cell activator, eosinophil granule major basic protein)</td>
<td>-7.4738</td>
<td>-10.154</td>
<td>1.40E-08</td>
</tr>
<tr>
<td>AKAP17A</td>
<td>A kinase (PRKA) anchor protein 17A</td>
<td>-3.00035</td>
<td>-9.37787</td>
<td>4.41E-08</td>
</tr>
<tr>
<td>COBLL1</td>
<td>Cordon-bleu WH2 repeat protein-like 1</td>
<td>-4.29677</td>
<td>-9.30799</td>
<td>4.91E-08</td>
</tr>
<tr>
<td>CLK1</td>
<td>CDC-like kinase 1</td>
<td>-4.28546</td>
<td>-9.21761</td>
<td>5.63E-08</td>
</tr>
<tr>
<td>EXOC1</td>
<td>Exo-cyst complex component 1</td>
<td>-3.98055</td>
<td>-8.9187</td>
<td>9.03E-08</td>
</tr>
<tr>
<td>ANKRD10</td>
<td>Ankyrin repeat domain 10</td>
<td>-2.71892</td>
<td>-8.75124</td>
<td>1.17E-07</td>
</tr>
<tr>
<td>RB1</td>
<td>Retinoblastoma 1</td>
<td>-3.47373</td>
<td>-8.75064</td>
<td>1.17E-07</td>
</tr>
<tr>
<td>METTL3</td>
<td>Methyltransferase like 3</td>
<td>-2.77435</td>
<td>-8.64896</td>
<td>1.37E-07</td>
</tr>
</tbody>
</table>

Table 5. Total number of disease specific DEGs and the top 10 Gene symbol in MGUS, MM and SMM

<table>
<thead>
<tr>
<th>Disease</th>
<th>Numbers of disease specific DEGS</th>
<th>Top10 Gene Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGUS</td>
<td>104</td>
<td>KCNMB2 LSAMP C12orf75 MRPS15 C14orf142 RGS14 CEP97 AKT3 ZNRD1 DHR59</td>
</tr>
<tr>
<td>MM</td>
<td>1245</td>
<td>C5orf30 PLAUR MYO1D SERBP1 ADNP2 PSAPL1 GALNT3 ZNF665 TRIM52 STAT3</td>
</tr>
<tr>
<td>SMM</td>
<td>5</td>
<td>ANKRD12 RNASE2 CLC TJP1 SMCHD1 PRG3 PRG2 AKAP17A COBLL1 CLK1</td>
</tr>
</tbody>
</table>

Figure 2. A: Protein-Protein Interaction network of all DEGs in MGUS; B: The DEGs with highest degree of complicity.
Gene expression profiling among MGUS, SMM and MM

are DEGs presented in only one type of diseases as well, which suggested a disease specific gene expression pattern in MGUS, SMM and MM (Table 5).

The protein-protein interaction (PPI) network for DEGs

Since our analysis identified the shared DEGs among MGUS, SMM and MM as well as disease specific DEGs, it is interesting to understand the protein-protein interaction network for these DEGs which may underline the novel regulation mechanism for disease progression or identify the key regulator for plasma cell malignancy. By utilizing the String (Protein interaction data base), we first analyzed the protein interaction network for all DEGs in MGUS (Figure 2). The size of the key nodes represents the complicity of the protein interaction net-
work for indicated genes. As demonstrated in Figure 2A, the CCND1, KIT, PTGS2, IGHM, CD19, ICAM2 and IGHG1 had been proposed to hold the most complicated interaction network in MGUS.

On the other hand, the PPI network was analyzed and drawn for the top 100 and 200 DEGs of SMM and MM (Figures 3A and 4A), respectively. Based on the degree of complicity, NFKB1, ITGA, SEC24B, GADD45A, RNASE3, CD81 and CD19 demonstrated the highest complicity for PPI among all DEGs for SMM (Figure 3B). Moreover, PTGS2, FCER1G, CD19, IGHM, AIF1, C1QB, CD163, GLUD2, CD99, HMOX1 and IGLC2 holds the highest complicity for PPI among all DEGs for MM (Figure 4B).

Discussion

Gene-expression profiling (GEP) based on microarray analysis for cancer cell provide a novel methods to analyze the changes of gene expression for cancer cell in a genomic-wide manner [12]. Previous report suggested that GEP for MM also provide a novel approach for disease prognosis or guide the selection of therapeutic targets as well [13].

Multiple myeloma is a specially neoplasm form which is characterized by the abnormal proliferation of terminally differentiated B cells or plasma cells [14]. It is believed that oncogenes expression promoted by immunoglobulin enhancers as a result of chromosome translocation is a major genetic cause for MGUS and MM [15]. Since the discovery of chromosome 13 deletions and abnormalities of chromosome 1q21 were associated with poor prognosis of MM in patients [15, 16], there were evidences suggested that all these major cytogenetic abnormalities in MM could be observed in MGUS and increasing chromosomal instability (CIN) is indispensable for normal plasma cell transformation to MM [13, 14]. Moreover, despite variety genetic abnormalities were observed, gene expression patterns within tumor cells are remarkably stable and reproducible for different MM patients [12].

Although genes expression signature has been proposed for prognosis of MM [17], the function for different DEGs identified among MGUS, SMM and MM is still largely unknown. In our study, we systematically analyzed the GEDs among three forms of plasma neoplasm. Based on our results, there were totally 21 genes were identified as the common DEGs which is shared by all three disease types. However, it is notable that the Top DEGs or total number of DEGs is different among them, suggesting a different genes expression pattern for these plasma neoplasms.

In our study, the PPI network for top DEGs of each disease had been constructed. In addition to the variable DEGs among three diseases, the PPI network and the DEGs located in the center of each network is also highly variable. In MGUS, CCND1 (cyclin D1) was identified as the gene shown highest complexity in PPI network, while NFKB1 and PTGS2 was identified as highest in SMM and MM, respectively. It appears that PPI networks are highly diversified among these diseases, which may implied different molecular mechanism of these DES and PPI played during the disease progression. Since NFKB1 and CCND1 were involved in cell proliferation, cell cycles and apoptosis, it is notable that PTGS2 which is coding for Prostaglandin-endoperoxide synthase 2 was demonstrated highest complexity in the PPI network of MM, which may suggest a unique therapeutic target for MM.

Taken together, these data suggested there may be different therapeutic target for each form of disease but need further validation. In sum, our study will provided new information for future development of therapy for MGUS, SMM and MM.

Disclosure of conflict of interest

None.

Address correspondence to: Nongjian Guo, Department of Hematology, Central Hospital of Ji’nan, No.105, Jiefang Road, Lixia District, Ji’nan 250013, Shandong, P.R. China. E-mail: guonongjian2016@sina.com

References

Gene expression profiling among MGUS, SMM and MM

