Association of MMP-9 gene polymorphism and ischemic stroke: evidence from a case-control study to a meta-analysis

Xu Liu, Ruixia Zhu, Qu Li, Zhiyi He

Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China

Received March 13, 2016; Accepted September 5, 2016; Epub October 15, 2016; Published October 30, 2016

Abstract: Matrix metalloproteinase 9 (MMP-9) plays an important role in the pathophysiology of inflammation. Several studies have investigated the association between MMP-9 -1562C/T polymorphism and risk of ischemic stroke (IS) where inflammatory process is involved, but the results were inconsistent. Therefore, we first conducted a case-control study to investigate the potential association, and then performed a meta-analysis to further address this issue. A total of 386 patients with IS and 386 unrelated controls were included in the study. Genotyping was performed using polymerase chain reaction-ligation detection reaction method. A meta-analysis was conducted by combining our data with previous relevant studies. In our case-control study, no significant association was found between MMP-9 -1562C/T and IS risk ($P > 0.05$). However, when combined with previous studies, the significant association of MMP-9 -1562C/T with IS risk was observed under allelic (OR = 1.28, 95% CI = 1.06-1.55, $P = 0.01$), homozygous (OR = 2.08, 95% CI = 1.49-2.90, $P < 0.01$), dominant (OR = 1.26, 95% CI = 1.03-1.53, $P = 0.02$) and recessive model (OR = 1.54, 95% CI = 1.08-2.20, $P = 0.02$). Moreover, subgroup analysis by ethnicity detected a significant association in Asian population, but not Caucasian population. In summary, evidence from a case-control study to a meta-analysis indicates that MMP-9 -1562C/T polymorphism likely serves as a potential risk factor for developing IS, especially in Asian population.

Keywords: Case-control studies, matrix metalloproteinase 9, meta-analysis, polymorphism, genetic, stroke

Introduction

Ischemic Stroke (IS) is the leading cause of death and disability worldwide [1]. Traditional factors, such as hypertension and diabetes, account for a significant proportion of IS risk, but much risk still remains uncovered [2, 3]. Evidence from twin and familial aggregation studies indicates that genetic risk factors might contribute to a predisposition to IS [4, 5]. Vascular inflammation is an essential process in the pathogenesis of IS [6, 7]. Therefore, genes involved in inflammatory responses are under investigation to look for genetic variants predisposing to IS.

As a well-known inflammatory mediator, matrix metalloproteinase 9 (MMP-9) belongs to a family of structurally related zinc-binding proteolytic enzymes. MMP-9 is characterized by specialized proteolytic activity against type IV collagen, the major component of the basal lamina around blood vessels [8]. Several experimental studies have reported that MMP-9 may facilitate the migration of vascular smooth muscle cells, infiltration of leucocytes and destabilization of atherosclerotic plaques [9-11]. Moreover, the clinical study has indicated that the increased plasma MMP-9 level may be a predictor of cardiovascular disease risk [12]. The human MMP-9 gene is located on chromosome 20q12-q13 and consists of 13 exons and 12 introns. A functional polymorphic T allele at the -1562 position gave rise to a two fold increase in the promoter activity [13]. The circulating concentrations of MMP-9 from individuals with the T/T or T/C genotypes were statistically higher than those from individuals with the C/C genotype [14, 15].

Therefore, several studies have gradually investigated the potential association between
Association of MMP-9 gene polymorphism and ischemic stroke

MMP-9 -1562C/T polymorphism and IS risk on different ethnic population. Some studies indicated an association between the MMP-9 -1562C/T and IS [16, 17]. However, these results have not been replicated in other studies [18, 19]. To address the issue, we decided to evaluate the association of MMP-9 -1562C/T with IS risk in a new case-control study, and then performed a comprehensive meta-analysis to derive a more reliable result.

Material and methods

Study participants

386 IS patients were recruited from Department of neurology, First Affiliated Hospital of China Medical University between September 2011 and December 2012. Eligible patients were defined as those who were first diagnosed with acute ischemic stroke according to neurological examination and radiological imaging. 386 healthy controls were recruited from the health examination department of the Red Cross Hospital, matched by age and sex, without clinical or radiological evidence of stroke and other neurological diseases. This study was approved by the Ethics Committees of both hospitals, and in compliance with the Helsinki Declaration. Written informed consents for the study were obtained from all participants.

Genotyping

Genomic DNA was extracted from EDTA-anticoagulated peripheral blood by a DNA Purification Kit. Genotyping was determined using the polymerase chain reaction-ligation detection reaction (PCR-LDR) method. The PCR primers used were: Forward: TGGGCGATCATC- TTGAGTCAAGA; Reverse: GCCCTATTGGGAAA- AACCTGCTA. The PCR cycling program was set at 95°C for 2 min, followed by 11 cycles of 94°C for 20 s, 65°C (decreased 0.5°C per cycle) for 40 s, 72°C for 1.5 min, and then 24 cycles of 94°C for 20 s, 59°C for 30 s, and 72°C for 1.5 min, and a final extension at 72°C for 2 min. The following LDR were performed in a total volume of 10 μL, containing 1 μL 10× ligation reaction buffer, 2 μL PCR product, 0.25 μL Taq DNA ligase, 6 μL double distilled H₂O and 0.4 μL of each probe. LDR probes were composed of two discriminating probes and one common probe. The LDR reactions were cycled as: 38 cycles of 94°C for 60 s and 56°C for 4 min. After the reaction, LDR product was sequenced with ABI3730XL sequencer. Then, the raw data was analyzed by GeneMapper 4.1.

Statistical analysis

Hardy-Weinberg equilibrium (HWE) analysis was assessed by χ² test for genotypes in the case and control group. Differences of the distributions of alleles and genotypes between cases and controls were analyzed using χ² test. The association of MMP-9 -1562C/T with IS was estimated by computing the odds ratios (OR) and 95% confidence intervals (CI) from logistic regression analysis. All the statistical analyses were performed with SPSS17.0 software. A value of P < 0.05 was considered statistically significant.

Meta-analysis

To further investigate the association of MMP-9 -1562C/T polymorphism with IS, a meta-analysis combining published literatures and our current study was conducted. We search various databases including Pubmed, Embase, CNKI (China National Knowledge Infrastructure), Chinese WanFang database up to December 31, 2015. The following terms were used in our search strategies: matrix metalloproteinase/MMP/Gelatinase and stroke/cerebral infarction/brain infarction/cerebrovascular disease and polymorphism/genotype/variant/allele.

The included articles should meet the following criteria: (1) published studies based on case-control design; (2) availability of allele and genotype frequency for calculating ORs and their 95% CIs. The studies were excluded if one of the following existed: (1) not case-control studies, (2) studies without available genotype num-
Association of MMP-9 gene polymorphism and ischemic stroke

Table 2. Genotype and allele distributions of MMP-9 -1562C/T in patients with ischemic stroke and controls

<table>
<thead>
<tr>
<th></th>
<th>Cases (%)</th>
<th>Control (%)</th>
<th>OR (95% CI)</th>
<th>P value</th>
<th>Adjusted OR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>300 (77.7%)</td>
<td>296 (76.7%)</td>
<td>Reference</td>
<td></td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>79 (20.5%)</td>
<td>83 (21.5%)</td>
<td>0.94 (0.66-1.33)</td>
<td>0.72</td>
<td>0.93 (0.65-1.34)</td>
<td>0.71</td>
</tr>
<tr>
<td>TT</td>
<td>7 (1.8%)</td>
<td>7 (1.8%)</td>
<td>0.99 (0.34-2.85)</td>
<td>0.98</td>
<td>1.17 (0.38-3.60)</td>
<td>0.78</td>
</tr>
<tr>
<td>Dominant effect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT+CT vs. CC</td>
<td>86/300</td>
<td>90/296</td>
<td>0.94 (0.67-1.32)</td>
<td>0.73</td>
<td>0.95 (0.67-1.35)</td>
<td>0.78</td>
</tr>
<tr>
<td>Recessive effect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT vs. CT+CC</td>
<td>7/379</td>
<td>7/379</td>
<td>1.00 (0.35-2.88)</td>
<td>1.00</td>
<td>1.18 (0.39-3.55)</td>
<td>0.77</td>
</tr>
<tr>
<td>Allele</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>679 (88.0%)</td>
<td>675 (87.4%)</td>
<td>Reference</td>
<td></td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>93 (12.0%)</td>
<td>97 (12.6%)</td>
<td>0.95 (0.70-1.29)</td>
<td>0.76</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Flow diagram of the study selection process.

Results

Our current case-control study

The characteristics of study participants were provided in Table 1. There were no significant differences in age ($P = 0.83$), gender ($P = 0.88$), or body mass index ($P = 0.20$) between patients and controls. However, the prevalence of traditional risk factors for IS, such as hypertension, diabetes mellitus, hyperlipidemia and smoking, in the patients was more frequent than those in the controls ($P < 0.01$).

The genotype and allele frequencies of MMP-9 -1562C/T polymorphism in patients and control subjects were shown in Table 2. All genotype distributions in both patients and controls were in the Hardy-Weinberg equilibrium ($P = 0.50$ for patient group, $P = 0.68$ for control group, respectively). As shown in Table 2, there was no significant difference in the distribution...
of alleles and genotypes of MMP-9 -1562C/T between IS patients and controls. Furthermore, logistic regression analysis was used to evaluate the association between MMP-9 -1562C/T and IS risk. Logistic regression analysis revealed no association for any genetic model after adjusting for traditional risk factors (TT vs. CC: OR = 1.17, 95% CI = 0.88-1.56, P = 0.34; TT vs. CT: OR = 0.93, 95% CI = 0.68-1.28, P = 0.66; TT vs. CC: OR = 0.93, 95% CI = 0.68-1.28, P = 0.66; TT + CT vs. CC: OR = 0.95, 95% CI = 0.66-1.36, P = 0.78; TT vs. CT + CC: OR = 1.18, 95% CI = 0.39-3.55, P = 0.77; Table 2).

The association between MMP-9 -1562C/T polymorphism and IS risk was analyzed in 13 original studies involving 2962 cases and 2789 controls. The analysis on the full data set indicated the significant association of MMP-9 -1562C/T with IS risk under allelic (OR = 1.28, 95% CI = 1.06-1.55, P = 0.01, I^2 = 57.2%, Figure 2), homozygous (OR = 2.08, 95% CI = 1.49-2.90, P < 0.01, I^2 = 30.7%), dominant (OR = 1.54, 95% CI = 1.03-2.30, P = 0.00, I^2 = 57.8%) and recessive model (OR = 1.53, 95% CI = 1.05-2.23, P = 0.02, I^2 = 50.7%). Moreover, sensitivity analysis showed that no single study qualitatively changed the pooled ORs with corresponding 95% CI under allelic, homozygous, and dominant model, but

Table 3. Main characteristics and genotype distribution of included studies

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Ethnicity</th>
<th>Sample size</th>
<th>Case</th>
<th>Control</th>
<th>Quality (score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liu X (2015)</td>
<td>Asian</td>
<td>386 386</td>
<td>7 79</td>
<td>300</td>
<td>High quality (13)</td>
</tr>
<tr>
<td>Nie SW (2014)</td>
<td>Asian</td>
<td>396 400</td>
<td>29 62</td>
<td>305 305</td>
<td>High quality (10)</td>
</tr>
<tr>
<td>Yue YH (2014)</td>
<td>Asian</td>
<td>284 226</td>
<td>7 50</td>
<td>227 227</td>
<td>High quality (13)</td>
</tr>
<tr>
<td>Li JY (2013)</td>
<td>Asian</td>
<td>302 308</td>
<td>0 50</td>
<td>252 252</td>
<td>High quality (13)</td>
</tr>
<tr>
<td>Shi N (2011)</td>
<td>Asian</td>
<td>224 112</td>
<td>0 38</td>
<td>186 186</td>
<td>High quality (12)</td>
</tr>
<tr>
<td>Zhou J (2009)</td>
<td>Asian</td>
<td>70 60</td>
<td>2 22</td>
<td>46 46</td>
<td>Low quality (8)</td>
</tr>
<tr>
<td>Hou LH (2009)</td>
<td>Asian</td>
<td>57 84</td>
<td>1 10</td>
<td>46 46</td>
<td>High quality (11)</td>
</tr>
<tr>
<td>Zhang L (2008)</td>
<td>Asian</td>
<td>114 80</td>
<td>3 16</td>
<td>95 95</td>
<td>High quality (11)</td>
</tr>
<tr>
<td>Zhou YL (2008)</td>
<td>Asian</td>
<td>101 114</td>
<td>0 14</td>
<td>87 87</td>
<td>High quality (12)</td>
</tr>
<tr>
<td>Montaner J (2003)</td>
<td>Caucasian</td>
<td>61 59</td>
<td>0 17</td>
<td>44 44</td>
<td>High quality (10)</td>
</tr>
</tbody>
</table>

Meta-analysis

55 studies were identified by the literature search, among which 13 studies met the inclusion criteria [16-19, 23-30]. A flow diagram schematized the process of selecting and excluding articles with specific reasons, as shown in Figure 1. Ethnicity, sample size, quality score and genotype distribution of studies included were summarized in Table 3.
Association of MMP-9 gene polymorphism and ischemic stroke

Figure 3. Sensitivity analysis for MMP-9 -1562C/T and IS risk in allelic model (T vs. C).

not recessive model (Figure 3 for allelic model). In the subgroup analysis by ethnicity, similar significant correlation with IS risk was observed in Asian population under allelic, homozygous, heterozygous and dominant model. However, in Caucasian population, the remaining pooled ORs were not significant for any genetic model (Table 4).

Visual inspection of funnel plot failed to detect significant bias in all genetic models (Figure 4 for allelic model). The results were further supported by the analysis of the data with Egger’s regression test ($P = 0.87$ for allelic model, $P = 0.49$ for homozygous model, $P = 0.24$ for heterozygous model, $P = 0.62$ for dominant model, and $P = 0.53$ for recessive model, respectively).

Discussion

To investigate the association between MMP-9 -1562C/T polymorphism and IS risk, we performed a case-control study and a comprehensive meta-analysis involving 5751 subjects.

In our case-control study, we found that the allelic and genotypic frequencies of MMP-9 -1562C/T were not associated with CI risk, which was consistent to Polish population as reported by Szczudlik [19]. However, several studies have reported a positive relation between MMP-9 -1562C/T and IS, and findings have been controversial. The difference among analysis of thirteen related studies worldwide. In our meta-analysis, we found the significant association of MMP-9 -1562C/T with IS risk in the population worldwide. Subgroup analysis by ethnic group also found MMP-9 -1562C/T was associated with IS in Asian population, but not Caucasian population. In 2014, Wen et al. [31] performed a similar meta-analysis including only 3 studies. Lack of significant association between MMP-9 -1562C/T and IS risk was observed under dominant or recessive model. Subsequently, Fan et al. [32] conducted another meta-analysis involving 6 studies and 2227 subjects. They also found no significant association of MMP-9 -1562C/T with IS risk. The inconsistency of our findings with the other two meta-analyses may be due to sample size. Our current meta-analysis added our own study and another six recent studies, involving 1786 IS patients and 1738 controls. In addition, the most studies in our meta-analysis were considered high quality studies (except for Zhou’s study [27]). Moreover, we observed no evidence of publication bias in our meta-analysis by funnel plot or Egger’s test. Thus, our meta-analysis might enhance the statistical power and draw a more reliable conclusion.

To our knowledge, this is the latest and largest meta-analysis focused on the association between MMP-9 -1562C/T polymorphism and susceptibility to IS. However, the following limitations should be taken into consideration:

By increasing the sample size, the meta-analysis has the ability to detect small effects in genetic association studies. Therefore, we have performed this comprehensive research findings can be explained by the following reasons. First, and most importantly, the sample size of the included studies was relatively small. It may be more likely to get false positive or false negative results. Second, the inconsistency might be caused by different allele frequencies across study populations, particularly in different geographical and ethnic groups.
Table 4. Summary ORs and 95% CI of MMP-9 -1562C/T polymorphism and ischemic stroke risk

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>T vs. C</th>
<th>TT vs. CC</th>
<th>CT vs. CC</th>
<th>TT+CT vs. CC</th>
<th>TT vs. CT+CC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>OR (95% CI)</td>
<td>P (%)</td>
<td>OR (95% CI)</td>
<td>P (%)</td>
<td>OR (95% CI)</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>1.28 (1.06-1.55)</td>
<td>57.2%</td>
<td>2.08 (1.49-2.90)</td>
<td>30.7%</td>
<td>1.19 (0.96-1.47)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>11</td>
<td>1.34 (1.10-1.64)</td>
<td>52.0%</td>
<td>2.07 (1.46-2.95)</td>
<td>38.7%</td>
<td>1.25 (1.07-1.45)</td>
</tr>
<tr>
<td>Caucasian</td>
<td>2</td>
<td>0.96 (0.74-1.25)</td>
<td>8.6%</td>
<td>2.16 (0.82-5.68)</td>
<td>NA</td>
<td>0.95 (0.49-1.84)</td>
</tr>
</tbody>
</table>

NA - not available.
In conclusion, our study suggests that MMP-9 -1562C/T polymorphism is associated with developing IS, with stronger evidence compared with previous case-control studies and meta-analyses. Given the limitations in our case-control study and meta-analysis, the results need to be considered with caution. Well-designed studies with larger sample size and more ethnic groups are required to validate the association of MMP-9 polymorphism and IS in the future.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 81400950, 81501006).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Zhiyi He, Department of Neurology, First Affiliated Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang 110001, Liaoning Province, China. Fax: +86 24 83282515; E-mail: hezhiyi0301@163.com

References

Association of MMP-9 gene polymorphism and ischemic stroke

Association of MMP-9 gene polymorphism and ischemic stroke

