Original Article

Prenatal ultrasound detection of fetal malformations in Inner Mongolia region

Yu Wang¹, Yan Bai², Hongjuan Zhao², Chunhui Li³, Lixin He³

Departments of ¹Gynecology and Obstetrics, ³Ultrasound, Inner Mongolia Medical University Affiliated Hospital, Hohhot, China; ²Graduate School of Inner Mongolia Medical University, Hohhot, China

Received February 4, 2016; Accepted May 2, 2016; Epub September 15, 2016; Published September 30, 2016

Abstract: Objectives: Ultrasonic rates of fetal malformation and prenatal soft-marker positivity in Mongolian and Han populations were investigated through a standardized screening protocol. Methods: A retrospective study of 7753 pregnancies (Mongolian, 1314; Han, 5751; others, 688) was conducted in our hospital, examining prenatal fetal ultrasound tests performed between September, 2011 and February, 2013. All ultrasonography scan were done during weeks 17-34 of gestation. Results: Of these pregnancies (N=7753; fetuses, 7955), 396 (4.98%) instances of fetal malformation were detected, 322 (4.05%) through ultrasonic soft markers. Instances of fetal malformation totaled 50 (3.72%) and 315 (5.33%), respectively in Mongolian and Han ethnic subsets, with ultrasound soft-marker positivity in 59 (4.39%) and 245 (4.15%) fetuses, respectively. Focally intense cardiac echogenicity and mild expansion of renal pelvis were common positive signs by ultrasound. Central nervous system, cardiovascular, and genitourinary malformations predominated. Conclusions: The array and rate of fetal malformations detected by prenatal ultrasound corresponded closely with regional birth defect data. Mongolian and Han ethnic groups showed no statistically significant differences in prenatal fetal malformation detection rate or ultrasonic soft-marker positivity.

Keywords: Ultrasound, fetal malformations, Mongolian, prenatal diagnosis

Introduction

The autonomous region of Inner Mongolia has one of the higher rates of birth defects in China [1]. A standardized protocol of prenatal ultrasound testing may improve detection of congenital malformations, helping to diminish fetal deaths in the perinatal period and ultimately improve the quality of births through efforts to reduce birth defect rates. By analyzing 7955 prenatal fetal ultrasound studies, this investigation assessed the utility of a standardized prenatal ultrasound protocol, comparing rates of ultrasound-detected defects in various maternal age groups and exploring potential differences in Mongolian and Han ethnic subsets.

Materials and methods

Ultrasound examination

A total of 7753 pregnancies (7955 fetuses) in women aged 19-52 years (average, 29.73 years) were subjected to a standard protocol of prenatal testing during 17-38 weeks of gestation in our Hospital. All tests were conducted between August, 2011 and February, 2013, using an iU22 unit (Philips Healthcare, Bothell, WA, USA) and color Doppler imaging (GE E8; GE Healthcare, Little Chalfont, Buckinghamshire, UK) to perform transabdominal examinations in supine position. In each instance, images needed, main anatomic structures, and pertinent measurements were recorded.

In accord with practice guidelines [2] of the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG), studies were classified by gestational age as grade I (14-17 weeks), grade II (28-32 weeks), or grade III (18-24 weeks) obstetric examinations. Degree of detail varied by examination classification, with grade II (also known the systemic fetal ultrasound or fetal malformation screening) providing the greatest detail. If cardiac abnormalities were detected, patients were referred for fetal echocardiography. The study was approved by the
Fetal malformation detection in Mongolian

Table 1. Fetal malformation statistics

<table>
<thead>
<tr>
<th>Organ system</th>
<th>Total</th>
<th>Malformation rate %</th>
<th>Nature of malformations (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central nervous</td>
<td>105</td>
<td>1.32</td>
<td>59 (Isolated) 46 (Multiple)</td>
</tr>
<tr>
<td>Skeletal</td>
<td>42</td>
<td>0.53</td>
<td>15 (Isolated) 27 (Multiple)</td>
</tr>
<tr>
<td>Digestive</td>
<td>28</td>
<td>0.35</td>
<td>13 (Isolated) 15 (Multiple)</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>80</td>
<td>1.01</td>
<td>43 (Isolated) 37 (Multiple)</td>
</tr>
<tr>
<td>Urinary</td>
<td>59</td>
<td>0.74</td>
<td>42 (Isolated) 17 (Multiple)</td>
</tr>
<tr>
<td>Respiratory</td>
<td>16</td>
<td>0.20</td>
<td>14 (Isolated) 2 (Multiple)</td>
</tr>
<tr>
<td>Facial</td>
<td>49</td>
<td>0.62</td>
<td>26 (Isolated) 23 (Multiple)</td>
</tr>
<tr>
<td>Reproductive</td>
<td>11</td>
<td>0.14</td>
<td>4 (Isolated) 7 (Multiple)</td>
</tr>
<tr>
<td>Other</td>
<td>112</td>
<td>1.41</td>
<td>59 (Isolated) 53 (Multiple)</td>
</tr>
</tbody>
</table>

Table 2. Ultrasonographic soft-marker positivity rates

<table>
<thead>
<tr>
<th>Soft marker</th>
<th>Positivity n (%)</th>
<th>Location</th>
<th>Distribution</th>
<th>Isolated (n)</th>
<th>Multiple (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventricular plaque</td>
<td>118 (1.48)</td>
<td>Double</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ventricular</td>
<td>113</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild pyelectasis</td>
<td>100 (1.26)</td>
<td>Double</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pelvis</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choroid plexus cysts</td>
<td>22 (0.28)</td>
<td>Bilateral</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ventricle</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventricular expansion</td>
<td>21 (0.26)</td>
<td>Bilateral</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ventricle</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cavum vergae</td>
<td>42 (0.53)</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single umbilical artery</td>
<td>20 (0.25)</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

28 fetuses with two positive soft markers; 1 fetus with three.

Table 3. Comparison of fetal malformation and soft-marker positivity rates by ethnicity

<table>
<thead>
<tr>
<th>Ultrasonography</th>
<th>Mongolian n (%)</th>
<th>Han n (%)</th>
<th>χ²</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malformations</td>
<td>50 (3.72)</td>
<td>315 (5.33)</td>
<td>2.275</td>
<td>0.131</td>
</tr>
<tr>
<td>Soft markers</td>
<td>59 (4.39)</td>
<td>245 (4.15)</td>
<td>0.029</td>
<td>0.865</td>
</tr>
</tbody>
</table>

Institute Research Ethics Committee of the Hospital.

Data collection and statistical analysis

Ultrasonic soft markers of fetal malformation are stipulated [3] as following: 1) echogenic intracardiac focus (EICF) is an isolated finding, similar to bony echogenic dots, without acous-tic shadowing; 2) mild renal pyelectasis is marked by an anteroposterior pelvic diameter (APD) >4 mm at Week 20-30 or >7 mm but <10 mm at Week 30-40 of gestation, without calicectasis; 3) choroid plexus cysts (CPCs) are round or oval cystic structures (single or multiple) of lateral ventricular choroid plexus; 4) mild fetal lateral ventricle expansion is defined by a fetal ventricular diameter of 10-15 mm in second trimester; 5) single umbilical artery (SUA) is self-explanatory (two are expected); and 6) cavum vergae (CV, also known as the sixth ventricle or fornix cavity) is a non-echogenic area in midline established by first confirming the thalamic plane, then inserting a probe (10°-15° posteroinferior) along cavum septum pellucidum.

Standard software (SPSS v-13.0; SPSS Inc, Chicago, IL, USA) was used for data analysis, comparing rates of fetal malformations and soft-marker ultrasound positivity in terms of ethnicity (Mongolian vs. Han) and maternal age. Statistical significance was set at P<0.05.

Results

Of the 7753 pregnancies studied, including 402 pairs of twins and three sets of triplets, fetal abnormalities were detected in 396 (4.98%) (Tables 1 and 3), with Mongolian and Han ethnicities accounting for 50 (3.72%) and 315 (5.33%) respectively, and 31 (1.82%) in others. The three most common types of deformity involved central nervous system (total, 105; rachischisis, 13; hydrocephalus, 40; Dandy-Walker syndromes, 14 (Figure 1); semilobar holoprosencephaly, 6; anencephalus, 2; and others, 44), including 14 cases of dual malformations; cardiovascular elements (total, 80; ventricular septal defect, 11; endocardial cushion defect, 9; pulmonic
Fetal malformation detection in Mongolian

A

- biparietal diameter-Mongolian
- biparietal diameter-Han

B

- head circumference-Mongolian
- head circumference-Han

C

- abdomen circumference-Mongolian
- abdomen circumference-Han

D

- femur length-Mongolian
- femur length-Han
Fetal malformation detection in Mongolian

Figure 1. Comparison of biparietal diameter, head circumference, abdominal circumference, femoral length, and humeral length during gestation (17-39 weeks) by ethnicity (Mongolian vs. Han).
Fetal malformation detection in Mongolian

stenosis or atresia, 8; hypoplastic left heart, 7; and more); and genitourinary structures (total, 59; multicystic dysplastic kidneys, 11; obstruction urine road disease, 5; polycystic kidney, 11; renal agenesis, 8; hydronephrosis, 15; and others, 9).

Ultrasonic soft markers of fetal malformations were positive in 322 (4.05%) of the 7753 pregnancies studied (Table 2), with 59 and 245 positive outcomes in Mongolian and Han ethnic groups, respectively and 18 in others (Table 3). EICF (1.48%) and mild expansion of renal pelvis (1.26%) were the most common soft markers detected. Soft-marker positivity was secondary in 42 cases and subsequently was discounted; 28 fetuses displayed two positive markers (EICF and mild pyelectasis) and one fetus exhibited three ultrasonic soft markers.

Rates of fetal malformation and ultrasonic soft-marker positivity were also compared in Mongolian and Han ethnic subsets, accounting for 1314 (16.95%; twins, 29 pairs; triplets, one set) and 5751 (74.18%; twins, 159 pairs) of the 7753 pregnancies, respectively. Rates of gestation. The fetus displayed a large lower abdominal cystic mass with a single septum, bilateral hydronephrosis, ambiguous genitalia, and a single umbilical artery. Abnormal amniotic fluid volume in late pregnancy thus appears to qualify as a soft marker of fetal chromosomal abnormalities.

Fetal ultrasonic soft-marker positivity is suggestive of chromosomal abnormalities. In newborns, the incidence of chromosomal abnormalities is low (0.1-0.2%) [9, 10], trisomy 21 being most common. Trisomies 18 and 13 are largely detectable as ultrasonic structural abnormalities, and genetic sonograms have proved useful for the screening of Down syndrome (trisomy 21) [11]. In 1987, scholars found that nuchal skin-fold thickness ≥6 mm and a ratio of actual-to-expected femoral length ≤0.91 enabled identification of Down syndrome with a sensitivity of 75% and a specificity of 98%; and prenatal ultrasonic detection of trisomies 13 (100%) and 18 (77%) was equally reliable [12]. The published literature suggests that concerns over pregnant women whose risk of fetal chromosomal abnormalities is high may be greatly reduced through prenatal ultrasonography that is devoid of soft markers, reducing the risk of trisomy 21 by 60-80% [13, 14]. In this study, 322 instances of soft-marker positivity were encountered, the top three being EICF (1.48%), mild pyelectasis (1.26%), and cavum vergae (0.53%). In a retrospective multicenter study, Kouamé [15] determined positive and negative predictive values of 76.4% and 99.8% respectively, linking polyhydramnios with fetal malformations (sensitivity, 87.3%; specificity, 99.5%) and indicating that this too may be a reliable index of birth defects. Rios [16] also reported the prenatal ultrasonography of a 20-year-old Caucasian woman with a diagnosis of oligohydramnios (G4P1A2) at 33 weeks of gestation. The fetus displayed a large lower abdominal cystic mass with a single septum, bilateral hydronephrosis, ambiguous genitalia, and a single umbilical artery. Abnormal amniotic fluid volume in late pregnancy thus appears to qualify as a soft marker of fetal chromosomal abnormalities.

In this study, the overall rate of fetal abnormalities detected by ultrasound was 4.98%, which is comparable to a figure reported by Hu [6], but which significantly surpasses the 1.03% rate reported for China in the year 2000 [7]. Our results may be skewed to an extent, given that consultations from outlying primary hospitals were included in this analysis. Central nervous system defects ranked first among the 396 malformations we detected, again coinciding with the majority of reports [8] and consistent with birth defect data of Inner Mongolia.

Discussion

Birth defects have profound effects on the quality of regional populations. Although a 3-4% rate is typically anticipated, environmental pollutants and more frequent infections during pregnancy have clearly increased the incidence of birth defects [4]. In China, about 4-6% of all births each year are affected [5], with Inner Mongolia registering some of highest rates of fetal malformation (e.g., central nervous system defects, cardiovascular anomalies, and facial dysmorphism).

In this study, the overall rate of fetal abnormalities detected by ultrasound was 4.98%, which is comparable to a figure reported by Hu [6], but which significantly surpasses the 1.03% rate reported for China in the year 2000 [7]. Our results may be skewed to an extent, given that consultations from outlying primary hospitals were included in this analysis. Central nervous system defects ranked first among the 396 malformations we detected, again coinciding with the majority of reports [8] and consistent with birth defect data of Inner Mongolia.
Fetal malformation detection in Mongolian

mosomal abnormalities [20]. In 1990, international experts for the first time agreed that pyelectasis and aneuploidy (especially trisomy 21) may be related. In a high-risk population, 25% of fetal trisomy 21 occurrences were marked by mild pyelectasis, compared with only 2.8% in a fetal group with normal chromosomes [21]. Another report [22] has cited a 1% incidence of unilateral pyelectasis without chromosomal abnormalities, whereas in bilateral pyelectasis with dilatation, the rate of combined chromosomal abnormalities was 3%.

The detection rate of CPC in a low-risk population is approximately 0.5-1% [23]. These lesions generally have a good prognosis, causing no symptoms or syndromes, and disappear before 28 weeks of gestation. However, if combined with other abnormalities, especially multiple malformations, the risk of chromosomal abnormalities is high.

Mongolian and Han ethnic groups differ in regional environment and living habits, as well as in genetic and anthropologic profiles, hence our concerns that fetal malformation and soft-marker positivity rates in ultrasound studies might differ. In this retrospective analysis, we found no statistically significant difference in respective rates of detected fetal malformations for the study interval, which is in accordance with previously reported conclusions [1]. However, it has been noted that detected malformation rates for various ethnic minorities in the Xinjiang region are lower than those recorded in Han pregnancies [24]. Furthermore, the false-positive rate of ultrasonic diagnosis of fetal abnormalities is not more than 0.1% (confirmed postpartum or by odinopoeia) [25, 26]. In subsequent studies, we will accrue as much data as feasible on Mongolian fetal prenatal status and focus more on potential Mongolian and Han ethnic fetal differences.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (81560260) and the Inner Mongolia Natural Science Foundation of China (2014MS0346, 2015MS08125).

Disclosure of conflict of interest

None.

References

[13] Yang WJ, Wu QQ, Yao L, WANG L, LI M, WANG X, LI L. The relevance study of fetal cardiac abnor-


