A rhesus monkey model of common carotid stenosis

Ziming Ye1*, Ying Liu2*, Xiawei Wang1, Xiangren Chen1, Cuiting Lin1, Ying Su1, Tianbao Wang1, Yanyan Tang1, Yuan Wu1, Chao Qin1

1Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, P. R. China; 2Department of Rehabilitation Medicine, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, P. R. China. *Equal contributors.

Received January 21, 2016; Accepted August 4, 2016; Epub September 15, 2016; Published September 30, 2016

Abstract: Objective: There are no common carotid stenosis (CCS) models in non-human primate animals yet. In this study, we combined the balloon injury in the left common carotid arteries (CCAs) with fat-rich feeding to establish a CCS model in the aged rhesus monkeys. Methods: Sixteen aged rhesus monkeys (14-18 years, 7.6-10.7 kg) were averagely allocated into the model and control groups, respectively. All the monkeys were made balloon injury in the left CCAs, and moneys in the model and control groups received high-fat food and normal food, respectively. At baseline and 20 weeks after the operation, the body weight and serum levels of blood lipids were measured. CCS and hemodynamic changes of CCAs were detected by the ultrasound and digital subtraction angiography (DSA) examinations, respectively. Results: Twenty weeks later after the operation, the model group monkeys exhibited apparent CCS in the left CCAs with an average CCS extent of 44.99 ± 3.93%, while the control group did not (P<0.001). Significantly decreased arterial lumen diameter and increased systolic and diastolic peak velocity were observed in the model group relative to control group at 20 weeks as well as to model group at baseline (all P<0.05). Furthermore, there was significant difference in mean transit time, time to peak, and time of appearance of peak value on DSA images between the model and control groups (all P<0.05). Conclusions: The combination of balloon injury with fat-rich feeding for 20 weeks is feasible and effective for the preparation of a CCS model in the aged rhesus monkeys.

Keywords: Common carotid stenosis, common carotid arteries, model, rhesus monkey, balloon injury, high-fat

Introduction

Ischemic cerebrovascular disease (ICVD), characterized as high morbidity, mortality and recurrence rate [1, 2], becomes a heavy socioeconomic and psychological burden. Until now, however, there have no sufficient and effective treatment regimens for ICVD yet. Carotid stenosis (CS) is demonstrated to be crucial for the pathogenesis and development of ICVD [3] because of the resultant abnormal hemodynamics [4-6]. To comprehensively elaborate the mechanisms underlying the pathogenesis and development of ICVD, it is necessary to establish a close-to-authenticity animal model of human common CS (CCS).

Up to now, there have been some animal models (such as mouse, rabbit, canine and swine models) of CCS induced by means of the combination of mechanical injury and fat-rich feeding. Mice are most commonly applied for CCS model because of the good genetic knowledge, homogeneity within strains, low cost, and convenient genetic modification [7-10]. However, due to the small size of mice, the murine model is difficult for the interventional operation and in-vivo neuroimaging evaluation of lesions. Moreover, the inconsistent existence of posterior communicating arteries in mice might lead to high outcome variability [10]. As to rabbits and canines, although they have no disadvantage of small size and thus might be used for in vivo imaging observation, high variations of cerebral vessels that would influence the consistency of the outcomes make rabbits and canines far from being used as the optimal animal model of CCS [11-14]. For swines, the big obstacle for CS modeling is the high incidence of sudden death [15, 16]. In addition, all the aforementioned animals shared limited homologous genes with the humans, making these
animal models difficult in simulating the real pathophysiological development from CS to ICVD in humans.

The rhesus monkeys are very close to the humans because they share over three quarters of homogenous genes with humans and that their biological behaviors, histological features and physiological metabolism also resemble to the humans [17]. This makes rhesus monkeys well simulate the pathogenesis and development of human diseases. Monkeys as the advanced primates are likely to be the ideal animal model of CCS simulating the clinical features of CCS in the humans due to the advanced genetic knowledge, suitable size, and similar physical conditions and biochemical aspects to the humans.

In the present study, we explored the feasibility and effectiveness of the combination of balloon injury in common carotid artery (CCA) with fat-rich feeding in the establishment of a close-to-authenticity CCS model in aged rhesus monkeys that simulates pathophysiological changes in the humans. This study will provide the basis for the mechanism investigation as well as the related drug development of human CCS and IVCD.

Materials and methods

Animals

Sixteen male aged rhesus monkeys (14-18 years, 7.6-10.7 kg, Wincon Comp., Shantou, China) were used. All rhesus monkeys were labeled and housed in iron cages (one rhesus monkey per cage) with soft and warm bedding at the constant temperature (18-23°C) and humidity (50 ± 15%) under a 12-hour day/night cycle. Before the experiment, all monkeys were fed with the standard chow, including rice, flour, soya bean meal, fish meal, chicken meal, and soybean oil three times (100 gram chow for each time) daily, and freely got access to the tap water. The total 16 rhesus monkeys were averagely randomized into control group and model group, respectively, eight for each group. This study was approved by the Institutional Committee of Animal Care and Usage of Guangxi Medical University, Nanning, China.

Modeling procedures

All rhesus monkeys were made balloon injury in the middle segment of left CCA. Briefly, the monkeys were placed and fixed in a supine position, with arms and legs fastened to the edges of the operating platform. Monkeys were sedated with intragluteal injection of atropine, induced anesthesia through intravenous injection of ketamine, and then maintained anesthesia through inhalation of 1.5% isoflurane. After that, monkeys received a tracheal intubation and were kept continuous ventilation via a special animal respirator (Harvard Model 683, Holliston Corp. Boston, USA). The rectal temperature (T) was monitored and maintained at 37°C by a CMA 50 feedback heating pad (Carnegie Medicine AB, Stockholm, Sweden). The vital signs (including pulse [P], heart rate [HR], respiration frequency [R] and blood pressure [BP]) and blood gas parameters (including the partial pressures of oxygen [PaO₂], carbon dioxide [PaCO₂], oxygen saturation [SaO₂], and arterial pH) were all monitored every ten minutes by means of a special vital sign monitor for animals (Wincon Comp.). Percutaneous arterial access through the Seldinger way was carried out via right femoral artery route and then a sheath was placed into this artery. With the help of steerable guide wires that were capable of getting across the femoral artery, a 5F MP-A1 guiding catheter (Evony, Cordis Corp., USA) was positioned into the proximal side of CCA. Then, the contrast agent Ultravist (Iopromide 370 Injection, Bayer Schering Pharma AG, Berlin, Germany) was injected 0.5 s later after the angiography onset to display the changes of vascular morphology and detect the occurrence of artery dissection and acute occlusion by both post-anterior-position and lateral-position carotid angiography using Siemens flat-panel digital cerebrovascular system (Axiom Artis Ece ceiling 146423, Siemens, Erlangen, Germany). The injecting velocity, flow, and maximal pressure of high-pressure injector were 3 ml/s, 6 ml, 150 pounds per square inch, respectively. The XRll field was set to be 160 mm, while the diameter of output image was 180 mm. The distance between the X-ray tube and C-arm was 100 cm. The window width, window level and matrix of each image were set to be 4096, 2048 and 1024×1024, respectively.

With the help of carotid angiography, position of the 5F MP-A1 guiding catheter was deeply recorded so that it could be located 20 weeks later. After the first carotid angiography, balloon injury was made in the left CCA. The balloon was first calibrated well to make sure that the
A common carotid stenosis model in rhesus monkey

Hemodynamic observation by DSA imaging

Acquired original DSA images were processed and analyzed by Screenshots software and Photoshop 7.0 image processing software. The indexes of the post-anterior-position carotid angiography images were just abstracted and analyzed. Moreover, the regions of interest (ROIs) were set in the left CCA, brain tissue, and superior sagittal sinus. Of note, for the setting of the brain tissue ROI, areas of large blood vessels should be excluded as much as possible, and for the setting of the superior sagittal sinus ROI, areas of brain tissue should be ruled out as much as possible. DSA imaging data were processed by Photoshop 7.0 image processing software. K value (denoted for the density or grayscale of DSA images) of ROI was read. The K value of pure white area was defined as 0%, while that of pure black area was as 100%. Between them, the K value would increase with the increment of ROI darkness. The K value of ROI was read for three times. The mean K value and its corresponding acquisition time of a serial of DSA images within each rhesus monkey were then imported into the Microsoft Excel software (Version 2003) so as to obtain the curve of acquisition time-K value. Out from the curve, the indexes of DSA images, including peak value of the density (PV), mean transit time (MTT), time to peak (TP), and time of appearance of peak value (TAPV) were all abstracted for further analysis.

Ultrasound examination

To reduce the artifacts as possible, the left necks of monkeys were shaved and cleansed, and were then slightly extended along with the surface topography of CCA. Then monkeys were performed examination of color duplex sonography using an Agile ultrasound system (LOGIQ E9, General Electric, Fairfield, USA). The axial and lateral resolution was 0.5 mm and 0.45 mm, respectively; the transmitting and receiving frequency was set as 7.6 MHz, while the pulse repetition frequency was set as the maximal velocity without any aliasing. To decrease errors from false angel correction during the flow examinations, the angel correction was required to be below 60 degree and maintained all the same. The gain of this apparatus was adjusted to lower background noise in case of necessity. The characteristics of arteries such as lumen diameter (LD) were observed. The
A common carotid stenosis model in rhesus monkey

pattern of velocity curve and related indexes of blood flow including systolic peak velocity (Vs) and diastolic peak velocity (Vd) were examined. These indexes were all measured at the sites of maximal stenosis or at the corresponding areas in CCAs.

Biochemical assessment

Blood samples were collected from the veins of left hind legs prior to and 20 weeks later after the modeling procedure. The serum levels of blood lipids, including total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), apolipoprotein-A1 (Apo-A1), and apolipoprotein-B (Apo-B) were measured according to the regular protocols of kits.

Behavioral observation

Prior to and 20 weeks later after the modeling procedure, the functions of nervous system in monkeys were comprehensively scored, including consciousness, sensation, movement, synchronization of skeletal muscle, and vision (bilateral) [19]. The score of 0 point represents a normal neural function, while 100-point represents a total abnormal neural function. Between them, the neural function becomes worse and worse with the increment of the scores [19].

Statistical analysis

All the quantitative data were normally distributed, expressed as mean ± standard derivation and statistically analyzed using SPSS 17.0 software for Windows (SPSS Inc., Chicago, IL, USA). Independent sample t test was used for appropriate comparison between the model and control groups at baseline and 20 weeks after the operation, and paired t test was for the comparison between the data at baseline and at 20 weeks in both the two groups. P<0.05 was considered as statistical significance.

Results

General information of surgery

During the operation, the vital signs (including T, P, HR, R, and BP), and the blood gas parameters (including PaO₂, PaCO₂, SaO₂, and arterial pH) in monkeys were all kept normal. All monkeys responded well to the inhalation of isoflurane without any anesthetic side effects such as twitch, asphyxia, arrhythmia and respiratory depression. There were no rhesus monkeys died during and post the operation.

Body weight and blood levels of lipids

Through the pilot experiment for up to half a year, we determined the measurement before and at 20 weeks after the operation. Prior to the operation, there was no significant difference in the body weight and blood levels of lipids (TC, TG, HDL-C, LDL-C, Apo-A1, and Apo-B) between these two groups (all P>0.05, Table 1). Twenty weeks later, the body weight and blood levels of lipids in the control group almost remained unchanged (all P>0.05), while the body weight and blood levels of TC, TG, LDL-C and Apo-B in the model group were significantly increased compared with those at baseline (P<0.05) and were also significantly higher than those in the control group (all P<0.05, Table 1).

Neural behaviors

The neural behavioral scores remained 0 in all the monkeys both at baseline and 20 weeks after the operation, indicating that the model-
A common carotid stenosis model in rhesus monkey

Ultrasound examination

Prior to the operation, there was no CCS occurring in all the monkeys, and was no significant differences in LD, Vs, and Vd within the left CCAs between the two groups (all P>0.05). Twenty weeks later, there was apparent narrowing and plaques in the left CCAs in the model group monkeys but without in the control group (Figures 1 and 2). The LD of the left CCAs was significantly smaller but the Vs and Vd were significantly higher in the model group than those in the control group at 20 weeks as well as than in the model group at baseline (all P<0.05, Table 2). Figures 2 and 3 showed the left CCA of a monkey within the model group manifested an apparent CS reflected by narrower lumen and faster blood flow.

Discussion

This study demonstrated that through the balloon injury in the left CCA in combination with fat-rich feeding for 20 weeks, aged rhesus moneys were induced characteristics of CCS as follows: 1) body weight and serum levels of lipids (including TC, TG, LDL-C and Apo-B) were significantly increased; 2) CCS was apparently observed in the left CCA by the ultrasound and DSA examinations; 3) ultrasound-based hemodynamic study showed that the LD of the left CCA was significantly decreased but the Vs and Vd were significantly increased; 4) DSA imaging-based hemodynamic study revealed that the TP, TAPV, and MTT were significantly increased, while PV was reduced. This established CCS model of aged rhesus monkeys was comprehensively confirmed through biochemical assessment, CCS determination (by ultrasound and DSA examinations), and hemodynamics study (by ultrasound and DSA examinations). Of note, DSA parameter imaging is a new special method for the confirmation of the CCS, which had not been previously reported. To our knowledge, this is the first report with regard to the establishment of CCS model in non-human pri-
Table 2. Indexes of ultrasound observation between the model and control groups

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th></th>
<th></th>
<th></th>
<th>20 weeks</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LD (mm)</td>
<td>Vs (cm/s)</td>
<td>Vd (cm/s)</td>
<td>LD (mm)</td>
<td>Vs (cm/s)</td>
<td>Vd (cm/s)</td>
</tr>
<tr>
<td>Control group</td>
<td>3.49 ± 0.44</td>
<td>114.35 ± 6.97</td>
<td>30.10 ± 2.36</td>
<td>3.49 ± 0.46</td>
<td>115.11 ± 4.45</td>
<td>30.36 ± 4.15</td>
</tr>
<tr>
<td>Model group</td>
<td>3.51 ± 0.42</td>
<td>115.47 ± 4.01</td>
<td>30.60 ± 2.11</td>
<td>2.13 ± 0.45</td>
<td>121.84 ± 4.91</td>
<td>34.11 ± 1.81</td>
</tr>
<tr>
<td>P value</td>
<td>0.914</td>
<td>0.700</td>
<td>0.447</td>
<td><0.001</td>
<td>0.012</td>
<td>0.035</td>
</tr>
</tbody>
</table>

Abbreviations: LD, lumen diameter; Vs, systolic peak velocity; Vd, diastolic peak velocity. *P<0.05 compared with the control group at 20 weeks after the surgery, #P<0.05 compared with the model group at baseline.

Figure 2. The arterial wall and lumen changes in a model group monkey after the balloon injury in the left CCA and 20-week fat-rich feeding by ultrasound examination. Yellow labels were used to locate the measured artery or plaque. The distance between upper and lower yellow labels was the diameter of artery (i.e. LD, shown as 1) and thickness of plaque (intima media thickness, shown as 2), respectively. The left lower frame showed the artery diameter of 0.14 cm (1 L) and the plaque thickness of 0.12 cm (2 L). L meant the left artery.

Figure 3. Hemodynamic changes in a model group monkey 20 weeks later after the operation by ultrasound examination. Red area showed the vein, and blue showed the artery. The Vs was measured to be 135.6 cm/s, and the Vd to be 24.8 cm/s.

Figure 4. DSA observation of the left CCA in a control group monkey 20 weeks later after the operation. No stenosis was observed.

mate animals. Since non-primate model is very similar to humans, this study will provide a basis for the mechanism investigation of human CCS and ICVD, drug development, etc. Overweight or even obesity usually increases the risk of ICVD, especially ischemic stroke [21, 22]. Cholesterol and LDL are not only the mainly deposited components within arterial walls of atherosclerosis (AS), but also the inductors of inflammatory reactions and oxidative stress during the formation and development of AS [23, 24]. Therefore, both cholesterol and LDL are widely accepted as major risk factors of ICVD and as parameters for the diagnosis of ICVD as well. In addition, recent clinical investigations demonstrated that the serum levels of Apo-A1 and Apo-B are also associated with AS [25, 26]. We showed that body weight and serum levels of TC, TG, LDL-C and Apo-B were
A common carotid stenosis model in rhesus monkey

significantly elevated in rhesus monkeys receiving balloon injury and 20 weeks of fat-rich feeding, which is analogous to what happen to the humans suffering from CCS [27].

One of the most frequent outcomes caused by CCS is neural dysfunction [28]. Since the cerebral blood is mainly supplied by CCA system, CCS, especially severe CCS is usually bound to give rise to crucial neural outcomes [29, 30]. In the present study, we comprehensively evaluated the neural functions, including consciousness, sensation, movement, synchronization of skeletal muscle, and bilateral vision in the rhesus monkeys. Surprisingly, neural dysfunction at 20 weeks was not found in both the two groups, although up to 44.99 ± 3.93% CCS was observed in the left CCAs of the model group. This suggests that unilateral CCS does not always lead to irreversible ischemic injury to brain tissues and the consequently evident manifestations of neural dysfunction. This might be attributable to the fact that collateral circulation of carotid arteries is more abundant within rhesus monkeys than that in the humans, and thus not all unilateral CS is likely to develop into ICVD with neural dysfunction in rhesus monkeys. The CCS monkey model in present study represents a moderate model that does not exhibit neural dysfunction. In fact, asymptomatic CCS without neural dysfunction is more frequent than symptomatic CCS with neural dysfunction. In addition, as a result of lack of special evaluation scales on neural functions for unilateral CCS, we have no choice but to apply a rapid evaluation scale for embolism in middle cerebral artery to our rhesus monkey model of unilateral CCS at present. In spite of being branched out from the CCA system, middle CCA supplies different brain areas from where are supplied by CCA. As a consequence, changes of neural functions caused by CCS of the left CCA may be inconsistent with that caused by stenosis of middle cerebral artery. This might be another reason why the neural functions were almost unchanged in all the monkeys throughout the experimental period.

As an in-vivo noninvasive neuroimaging method, ultrasound examination was used to evaluate the hemodynamic changes in CS models [16, 31]. However, ultrasound has low-quality resolution, difficulty in detecting coarse, irregular-shape and heterogeneous-textured objects such as the carotid arteries, and difficulty in exactly carrying out quantitative and qualitative representations of the found lesions. DSA is the gold standard of cerebral angiography that is used to evaluate hemodynamic changes after operation besides ultrasound examination. In this study, we combined the ultrasound with DSA examinations to determine the CCS in the CCAs of monkeys.

Plaques shown by ultrasound examination are likely to occur in arterial wall when the intima-media thickness (IMT) is in excess of 1.5 mm, which will lead to narrow lumen and fast blood flow. Even worse, plaques will also give rise to the follow-up development including rupture and ulceration, so that the distal end of artery is about to be occluded. Thickening of IMT and occurrence of plaques of the CCA are considered as effective indicators for the diagnosis of asymptomatic CS and prognosis of stroke risk [32-34]. Ultrasound examination in the present

Figure 5. DSA observation of the left CCA in a model group monkey 20 weeks later after the operation. The narrow segment (arrowed) was clearly observed.
A common carotid stenosis model in rhesus monkey

study showed 20 weeks later after the modeling procedures, a few inhomogeneous-internal-echoes and convex to lumen plaques occurred in the balloon-injured area, and the thickened IMT and reduced LD were observed in the model group, indicating the appearance of CCS. DSA examination in this study showed that rhesus monkeys shared similar cerebral blood supply and anatomical orientation and distribution of cerebral vessels to those in humans, suggesting that the rhesus monkey is an optimal animal model for simulating the pathophysiological changes from CCS to ICVD in the humans. Further, DSA measurement verified the occurrence of CCS in the left CCAs simulating the characteristics of human CCS in the aged rhesus monkeys after the operation of balloon injury in combination with 20-week of fat-rich feeding. Hemodynamic change in CCA is an important feature of a success CCS model [16, 31], we thus observed the hemodynamic changes in the two group monkeys using ultrasound and DSA techniques, respectively. Ultrasound examination showed in addition to the thicken IMT and reduced LD of left CAAs, faster Vs and Vd were also observed in the model group. These characteristics were analogous to what have been verified in patients with CCS [35-37], suggesting that balloon injury in CCA plus fat-rich feeding for 20 weeks can effectively induce the CCS. DSA is widely accepted for cerebral angiography and is also used as a new way to evaluate the hemodynamic changes [38]. With the development of computer techniques and processing softwares, DSA imaging is more and more being applied to evaluate the hemodynamic changes after arterial stenosis [39]. We showed that shorter PV but longer TP and TAPV in CCA ROI as well as shorter PV but longer TP, TAPV and MTT within both the brain tissue and superior sagittal sinus ROIs were all observed 20 weeks later after the modeling procedures in model group as compared with control group. This finding further indicates that significantly aberrant hemodynamic changes occur after CCS. The present study preliminarily demonstrates that the application of DSA imaging is feasible to evaluate the follow-up hemodynamic changes after CCS, which has not been previously reported.

An important limitation of this study is that for some reasons, monkeys were not sacrificed for histological analysis. However, ultrasound observation and DSA imaging evaluation confirmed the success of the establishment of CCS in aged rhesus monkeys.

Conclusions

The combination of balloon injury in the left CCA with fat-rich feeding is feasible and effective for the establishment of CCS model that simulates the characteristics of human CCS in the aged rhesus monkeys. This study will provide a basis for the mechanism investigation and the related drug development of human CCS and IVCD.

Acknowledgements

The present study was funded by the grant from National Nature Science Foundation of China (No. 81360191).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Chao Qin, Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530-021, Guangxi, P. R. China. Tel: 86-0771-5356735; Fax: 86-0771-5350031; E-mail: mdqc6639@163.com

Table 3. DSA imaging acquisition indexes of CCA, brain tissue and superior sagittal sinus ROI between the model and control groups

<table>
<thead>
<tr>
<th></th>
<th>Control group</th>
<th>Model group</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCA ROI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV</td>
<td>16.64 ± 2.10</td>
<td>14.31 ± 1.45</td>
<td>2.579</td>
<td>0.022</td>
</tr>
<tr>
<td>TP</td>
<td>0.51 ± 0.12</td>
<td>0.65 ± 0.13</td>
<td>2.360</td>
<td>0.033</td>
</tr>
<tr>
<td>TAPV</td>
<td>0.89 ± 0.25</td>
<td>1.20 ± 0.26</td>
<td>2.196</td>
<td>0.032</td>
</tr>
<tr>
<td>Brain tissue ROI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV</td>
<td>2.81 ± 0.55</td>
<td>2.28 ± 0.34</td>
<td>2.300</td>
<td>0.037</td>
</tr>
<tr>
<td>TP</td>
<td>0.72 ± 0.11</td>
<td>0.95 ± 0.23</td>
<td>2.472</td>
<td>0.027</td>
</tr>
<tr>
<td>TAPV</td>
<td>1.69 ± 0.12</td>
<td>1.88 ± 0.17</td>
<td>2.432</td>
<td>0.029</td>
</tr>
<tr>
<td>MTT</td>
<td>1.47 ± 0.20</td>
<td>1.66 ± 0.14</td>
<td>2.175</td>
<td>0.047</td>
</tr>
<tr>
<td>Superior sagittal sinus ROI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV</td>
<td>43.70 ± 2.30</td>
<td>41.35 ± 1.15</td>
<td>2.584</td>
<td>0.022</td>
</tr>
<tr>
<td>TP</td>
<td>1.53 ± 0.27</td>
<td>1.78 ± 0.16</td>
<td>2.257</td>
<td>0.041</td>
</tr>
<tr>
<td>TAPV</td>
<td>2.97 ± 0.37</td>
<td>3.40 ± 0.38</td>
<td>2.327</td>
<td>0.035</td>
</tr>
<tr>
<td>MTT</td>
<td>1.57 ± 0.22</td>
<td>1.92 ± 0.36</td>
<td>2.357</td>
<td>0.034</td>
</tr>
</tbody>
</table>

Abbreviations: CCA, common carotid artery; PV, peak value of the density; TP, time to peak; TAPV, time of appearance of peak value; MTT, mean transit time.
References

A common carotid stenosis model in rhesus monkey

[36] Braun RM, Bertino RE, Milbrandt J, Bray M and Society of Radiologists in Ultrasound Consen-
A common carotid stenosis model in rhesus monkey

