Original Article
Lung cancer-targeting treatment of iRGD-LP-DOX/Rg3 through integrin receptor-mediated endocytosis

Yang Gao¹*, Mei-Jiao Xiang²*, Jing Zhang³

Departments of ¹General Practice, ³Respiration, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, No. 32 West Second Section First Ring Road, Chengdu, Sichuan, China; ²Intensive Care Unit, Jinhua City People’s Hospital, No. 228 Xinhua Road, Jinhua, Zhejiang, China. *Equal Contributors.

Received January 19, 2016; Accepted August 3, 2016; Epub September 15, 2016; Published September 30, 2016

Abstract: Objective: To prepare the specific ligand for integrin receptors, iRGD-LP-DOX/Rg3 (liposomes co-carrying cytotoxic drug doxorubicin DOX and antiangiogenic agent ginsenoside Rg3 modified by iRGD), and to investigate its targeting property and therapeutic effect for lung cancer by performing experiments in vivo and in vitro. Methods: Film dispersion method was used to prepare iRGD-LP-DOX/Rg3 and its physicochemical properties including particle size, potential and encapsulation efficiency were observed. MTT method was used to detect the effect of liposomes on the proliferation of A549 and HUVEC (human umbilical vein endothelial cells) cell lines. Fluorescence spectrophotometric method was used to detect the uptake of liposomes by A549 and HUVEC cells and confocal microscopy was used to qualitatively observe the uptake of RGD-LP-DOX/Rg3 by A549 and HUVEC cells. A heterotopic lung cancer model was established in nude mice to explore the inhibitory effect of iRGD-LP-DOX/Rg3 on tumors and its accumulative ability in vivo tumor tissues. Results: The particle size and potential of iRGD-LP-DOX/Rg3 were 112.3 ± 11.5 nm and 4.2 ± 1.16 mV, respectively. The encapsulation efficiency of DOX and Rg3 were (89.5 ± 4.5)% and (82.6 ± 2.1)%, respectively. On the one hand, 48 h after administration in A549 cells, in comparison to PBS group, the cell viability of A549 cell of groups treated with LP-DOX/Rg3, iRGD-LP-DOX, iRGD-LP-Rg3 and iRGD-LP-DOX/Rg3 were 61.2%, 42.9%, 73.3% and 22.3%, respectively. The differences among groups were of statistical significance (P<0.01). On the other hand, the cell viability of HUVEC cell groups treated by LP-DOX/Rg3, iRGD-LP-DOX, iRGD-LP-Rg3 and iRGD-LP-DOX/Rg3 were 55.3%, 43.9%, 62.8% and 18.6%, respectively. The differences among groups were also of statistical significance (P<0.01). The uptake efficiency of iRGD-LP in A549 cells was 2.9 times more than that of regular liposomes (LP) and the uptake efficiency of iRGD-LP in HUVEC cells was 3.7 times more than that of LP. The differences were both of statistical significance (P<0.01). Results: of confocal microscopy and quantitative experiments were consistent and indicated that the modification of iRGD could improve the cell uptake efficiency of LP. Experiments performed in tumor-bearing nude mice demonstrated that the inhibitory effect of iRGD-LP-DOX/Rg3 on tumor growth was evidently stronger than that of other groups and the differences among groups were of statistical significance (P<0.01). Compared with other groups, iRGD-LP-DOX/Rg3 could extend the survival time of tumor-bearing nude mice effectively. In vivo near-infrared fluorescence imaging assay showed that the accumulative ability of iRGD-LP was obviously stronger than that of LP. Conclusion: iRGD-LP-DOX/Rg3, with good affinity to A549 and HUVEC cells, is a potentially highly efficient tumor and angiogenesis targeting drug-delivery system.

Keywords: Integrin receptor, angiogenesis, LP, lung cancer

Introduction

Lung cancer is the No.1 malignant tumor threatening human health. In China, about 500,000 cases is newly identified every year. It is predicted that there will be 1000,000 patients with lung cancer annually until 2025 [1, 2]. Clinicians, therapists for tumor in particular, are facing an extremely difficult and tough situation. Currently, the treatment of lung cancer is mainly based on surgery and partly based on combined chemotherapy. However, due to a lack of selectivity of chemotherapy with cytotoxicity, adverse reactions and toxicity are inevitable and patients have poor tolerance. Therefore, tumor targeting drugs become the hotspot of current anti-tumor researches.

Integrins, a group of cell adhesion molecules, are widely expressed on the surface of nucle-
IRGD-LP-DOX/Rg3 for lung cancer-targeting

ated cells [3, 4]. Among them, integrin αβ3 is highly expressed on the surface of various tumor cells like neuroglioma [5], melanin [6] and ovarian cancer [7], as well as that of endothelial cells [8-10] associated with tumor. It is closely related to tumor angiogenesis, metastasis and radiotherapy [11-13]. Hence, integrin αβ3 is usually used as a specific target spot for tumors.

Tumor-targeting cell-penetrating peptides, with targeting property, can deliver drugs through cell surface receptor-mediated penetrating effect when they arrive at specific spots [14]. iRGD is a kind of tumor-targeting peptide. Its sequence is CRGDRGPDC, among which RGD can target integrins and thus target tumor sites where integrins are highly expressed. Then, the R residue produced after incision by a specific enzyme near the tumor will interact with NRP-1 receptors located on the surface of tumor cells, leading to cell penetrating effect [15-17]. For this reason, iRGD, this multifunctional polypeptide, has received much attention and been investigated.

With the development of modern oncomolecular biology, more and more therapeutic methods for tumors appear, among which targeted inhibition of tumor angiogenesis is an effective one. Vessel-targeting antitumor therapy deprives the supply of nutrients and oxygen by blocking blood supply and thus causes avascular necrosis [18-21]. Recent studies indicated that ginsenoside Rg3 could inhibit the growth of lung cancer cells and angiogenesis in mice effectively [22]. Nevertheless, administration of antiangiogenic agents alone easily led to drug resistance. Therefore, cytotoxic drugs were combined with antiangiogenic agents so as to enhance antitumor effect. Studies suggested that integrin receptors were highly expressed on the surface of tumor cells and vascular endothelial cells [23-25]. Therefore, in this study, iRGD-LP-DOX/Rg3 was prepared by using liposomes as carriers to explore the therapeutic effect of this drug delivery system.

Material and methods

Experimental materials

Fetal calf serum and DMEM culture medium were purchased from Thermo-Fisher Biochemical Products (Beijing, China) Co., Ltd.; Doxorubicin (DOX) from Jiangsu Hengrui Medicine Co., Ltd.; MTT kit and ginsenoside Rg3 from Sigma; iRGD from GL Biochem (Shanghai) Co., Ltd.; Soyabean lecithin, DSPE-PEG2000 and DSPE-PEG2000-MAL from Avanti Polar Lipids (the US). The rest of reagents were analytically pure. A549 cell line was purchased from ATCC and female nude mice from Dashuo Experimental Animal Center of Chengdu (Sichuan, China).

Methods

Cell culture: A549 cells were cultured in a DMEM culture medium with 100 mg/L fetal calf serum, 5% CO2 and saturation humidity at 37°C. When cell confluence reached up to 0.8-0.9, it was digested with 2.5 mg/L pancreatin and sub-cultured. Cells during logarithmic growth phase were collected for study.

HUVEC cells were cultured in a DMEM culture medium with 100 mg/L fetal calf serum, 5% CO2 and saturation humidity at 37°C. When cell confluence reached up to 0.8-0.9, it was digested with 2.5 mg/L pancreatin and sub-cultured. Cells during logarithmic growth phase were collected for study.

The preparation of liposomes: iRGD-PEG2000-DSPE was synthesized according to methods described in literature [26, 27]. 12.05 mg soyabean lecithin, 0.96 mg cholesterol, 1.10 mg iRGD-PEG2000-DSPE, 0.33 mg DOX and 30.30 mg ginsenoside Rg were weighed carefully and dissolved in chloroform. The resultant solution underwent reduced pressure distillation in an eggplant-shaped bottle for film formation. Then, the organic solvent was removed and the rest was placed overnight in a vacuum drier to ensure intensive drying. Afterwards, 1 ml PBS was added for hydration and iRGD-LP-DOX/Rg3 was obtained by ultrasonography with probes (80 W, 10 s, 10 s, 5 times). iRGD-LP-DOX, iRGD-LP-Rg3 and LP-DOX/Rg3 were obtained in the same way.

A proper amount of liposomes prepared was taken to measure its size and potential with a laser particle analyzer. Unencapsulated DOX and ginsenoside Rg3 were separated from liposomes through glucose gel column chromatography. Then, demulsification was conducted for these liposomes with methanol. After that, the content of DOX and ginsenoside Rg3 was detected by using HPLC method at 233 nm...
After that, the solution was washed with ice-cold PBS for three times. Later, 4% paraformaldehyde was added for fixation for 15 min. Then, paraformaldehyde was discarded and the resultant substance was stored with ice-cold PBS and placed under a laser confocal fluorescent inverted microscope for observation.

In vivo assay: A549 cells, after being digested with pancreatin and centrifugation, were suspended in DMEM culture solution. The concentration of this solution was adjusted to 5×10⁷ cells/mL. Female nude mice weighing 20-25 g aged 4-6 weeks were taken out and A549 cell suspension prepared was inoculated at the back of these mice (0.1 mL per mice). 1-2 weeks after inoculation, when masses were found at their back, it meant that the inoculation was successful. Then, 50 tumor-bearing nude mice selected were randomized into five groups (10 mice/group) -LP-DOX/Rg3, iRGD-LP-DOX, iRGD-LP-Rg3, iRGD-LP-DOX/Rg3 and PBS group. These drugs were administered at days 1, 3, 6 and 9. Tumor size and the body weight of nude mice were recorded every two days. The survival time of each mouse was described and Kaplan-Meier curves were drawn.

Liposomes carrying near infrared fluorescence DIR were prepared according to Section 1.2.2 and were injected through caudal vein in tumor-bearing nude mice. 8 h later, these mice were anesthetized with 10% chloral hydrate and fixed under a whole body optical imaging system in supine position for observation and photography (Ex=730, Em=790).

Statistical methods

Experimental data was expressed as mean ± SD. Data analysis was performed by using statistical software SPSS11.0. Comparison of me-
IRGD-LP-DOX/Rg3 for lung cancer-targeting

Results

The size, potential and encapsulation efficiency of liposomes

The size of iRGD-LP-DOX/Rg3 was 112.3 ± 11.5 nm and potential 4.2 ± 1.16 mV. The encapsulation efficiency of DOX and Rg3 was (89.5 ± 4.5)% and (82.6 ± 2.1)%, respectively. They were presented in Table 1.

The inhibitory effect of iRGD-LP-DOX/Rg3 on the proliferation of A549 and HUVEC cells

Results of MTT assay was shown in Figure 1. On the one hand, 48 h after administration in A549 cells, compared with PBS group, the cell viability of A549 cell of groups treated with LP-DOX/Rg3, iRGD-LP-DOX, iRGD-LP-Rg3 and iRGD-LP-DOX/Rg3 were 55.3%, 43.9%, 62.8% and 18.6%, respectively. The differences among groups were of statistical significance (P<0.01). Further, the inhibition ratio of each group for the proliferation of A549 at 48 h was obviously higher than that at 24 h and the difference was of statistical significance (P<0.01). On the other hand, the cell viability of HUVEC cell groups treated by LP-DOX/Rg3, iRGD-LP-DOX, iRGD-LP-Rg3 and iRGD-LP-DOX/Rg3 were 61.2%, 42.9%, 73.3% and 22.3%, respectively. The differences among groups were of statistical significance (P<0.01). Further, the inhibition ratio of each group for the proliferation of HUVEC cells at 48 h was obviously higher than that at 24 h and the difference was of statistical significance (P<0.01). A549 and HUVEC cells uptake of liposomes

Integrin receptors were highly expressed on the surface of A549 and HUVEC cells. Quantitative results of cell uptake assay were shown in Figure 2: The A549 cell uptake efficiency of iRGD-LP was 2.9 times more than that of regular LP and the difference was of statistically significance (P<0.01); The HUVEC cell uptake efficiency of iRGD-LP was 3.7 times more than that of LP and the difference was of statistically sig-

Figure 1. The survival rate of A549 cells (A) and HUVEC cells (B) after being treated with different liposomes. Compared with PBS group, ΔP<0.01; Compared with iRGD-LP-DOX/Rg3, **P<0.01; Compared with cell survival rate at 24 h, #P<0.01.

Figure 2. A549 and HUVEC cell uptake of liposomes. **P<0.01, the difference was of statistical significance.
IRGD-LP-DOX/Rg3 for lung cancer-targeting

Figure 3. A549 (A, B) and HUVEC (C, D), cell uptake of LP (B, D) and iRGD-LP (A, C) observed under confocal microscopy.

Significance (P<0.01). Qualitative results of observation under laser confocal fluorescent inverted microscope were presented in Figure 3. The fluorescence intensity of iRGD-LP group in both
Figure 4. A. The volume (x ± s) of lung cancer tissues after being treated with different liposomes; B. The changing curve of body weight in each group; C. Kaplan-Meier curve; D. The representative in vivo images of A549 tumor-bearing BALB/C mice after injection of DiR-labeled liposomes. Compared with PBS group, "P<0.01; Compared with LP-DOX/Rg3, iRGD-LP-DOX and iRGD-LP-Rg3 group, ^P<0.01. The difference was of statistical significance.
A549 and HUVEC cell uptake assays was obviously stronger than that of LP, which was consistent with results of quantitative assay.

In vivo antitumor study

Results of treatment experiments in tumor-bearing nude mice were shown in Figure 4A. The tumor inhibition ratios of LP-DOX/Rg3, iRGD-LP-DOX, iRGD-LP-Rg3 and iRGD-LP-DOX/Rg3 were higher than PBS group, respectively (P<0.01). The tumor inhibition ratios of iRGD-LP-DOX/Rg3 was higher than other liposomal groups, respectively (P<0.01). There was statistically significant difference between iRGD-LP-DOX/Rg3 group and other groups (P<0.01). Figure 4B indicated that, during treatment, the body weight of nude mice in each group had no big change, suggesting that liposomes prepared in this study were able to reduce toxicity effectively. The survival time of nude mice in each group was described and results were shown in Figure 4C. The median survival period was 20 days, 29 days, 37 days and 53 days for PBS group, iRGD-LP-Rg3 group, iRGD-LP-DOX group and iRGD-LP-DOX/Rg3 group, the difference was statistically significant (P<0.01). iRGD-LP-DOX/Rg3 could extend the survival time of tumor-bearing mice remarkably.

The in vivo biodistribution and tumor accumulation profiles of DIR-loaded liposomes were clearly visualized by monitoring the whole body NIRF intensity in subcutaneous xenograft bearing nude mice model (Figure 4D). Obviously, the tumor accumulation of iRGD-LP was higher than LP. These results implied that the iRGD-LP could efficiently target to solid tumors and decrease non-specific accumulation in normal organs such as livers, lungs and kidneys. Control animals injected with PBS produced no fluorescence signals, which confirmed that the observed fluorescence signal was truly from the liposomes.

Discussion

Studies revealed that ginsenoside Rg3 could inhibit the proliferation of various tumor cells, including lung cancer [28], osteosarcoma [29], ovarian cancer [30] and esophagus cancer [31]. Also, it could inhibit tumor angiogenesis effectively. Liposomes were bilayer spherical structures composed of phospholipids. In the past thirty years, they were widely studied. With good biocompatibility, liposomes were an ideal drug delivery system for tumors [2]. In 1971, Folkman [32] et al. pointed out that since tumor growth and metastasis relied on angiogenesis, inhibiting tumor angiogenesis could be used as a new strategy in treating cancer. Anti-angiogenic therapy thus came into being and scholars had made numerous studies in this field [33]. It was demonstrated that integrin receptor αvβ3 was highly expressed on the surface of tumor cells and vascular endothelial cells [34]. iRGD was a kind of polypeptide which could combine specifically with integrin receptors. In this study, iRGD was attached to the surface of liposomes encapsulating DOX and ginsenoside Rg3 so as to target and inhibit the growth of lung cancer cells and tumor angiogenesis. Up to now, the drug delivery system co-carrying DOX and ginsenoside Rg3 has rarely been reported.

iRGD-LP-DOX/Rg3 was prepared successfully in this study. The A549 and HUVEC cell uptake of liposomes was then investigated via cell uptake assay. Results indicated that the endocytosis efficiency of liposomes modified by iRGD was obviously higher than unmodified ones. The same results were also obtained in the tumor penetration assay. The reason was endocytosis mediated by integrin receptors which were highly expressed in lung cancer cells and vascular endothelial cells. MTT assay explored the inhibitory effect of liposomes on the proliferation of lung cancer cells and vascular endothelial cells. Results suggested that modification of iRGD could evidently enhance cytotoxicity. They were consistent with those of cell uptake assay. That is to say, cell uptake of liposomes had an effect on their cytotoxicity. In addition, a heterotopic lung cancer model was established in nude mice to investigate the inhibitory effect of different liposomes on tumor growth. Results obtained were consistent with those of in vitro studies. The inhibitory effect of iRGD-LP-DOX/Rg3 was evidently stronger than other groups. It was demonstrated in a near infrared fluorescent imaging assay that liposomes modified by iRGD could improve their accumulation in tumor tissues to prevent tumor growth.

In conclusion, iRGD-LP-DOX/Rg3 was prepared in this study. It got to tumor tissues through EPR effect and endocytosis was enabled by taking advantage of integrin receptors highly expressed on the surface of tumors and vascul-
lar endothelial cells. With good tumor and tumor angiogenesis targeting property, it is a potentially highly efficient drug delivery system for treating tumors and angiogenesis.

Disclosure of conflict of interest

None.

Address correspondence to: Jing Zhang, Department of Respiration, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, No. 32 West Second Section First Ring Road, Chengdu, Sichuan, China. E-mail: today2future@sina.com

References

[21] Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, Ito Y, Mori Y. The transient receptor protein homologue TRP6 is the es-
IRGD-LP-DOX/Rg3 for lung cancer-targeting

