Review Article

Perioperative pro-/synbiotic for colorectal surgery: a systematic review and updated meta-analysis of randomized controlled trials

Wei-Zhe Chen1*, Jin-Xiao Lu1*, Liang-Fu Ding2, Hui Huang2, Yi-Ping Ni2, Hui Ji2, Cheng-Le Zhuang1, Zhen Yu2

1Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; 2Department of General Surgery, Shanghai Tenth People’s Hospital Chongming Branch, No. 66 Xiangyang East Road, Chongming County, Shanghai 202157, China. *Equal contributors.

Received January 15, 2016; Accepted April 6, 2016; Epub June 15, 2016; Published June 30, 2016

Abstract: Aim Perioperative pro-/synbiotic therapy is widely used in surgical patients to reduce infections and enhance recovery. However, it remains controversial when used in colorectal surgery. We performed this meta-analysis to assess the efficacy of perioperative pro-/synbiotic in colorectal surgery. Methods After the literature search of PubMed, Embase, Cochrane Library and Web of Science, a systematic review and meta-analysis were performed on randomized controlled trials. Quality assessment and data extraction were performed. The main outcomes included total postoperative infectious complications, pneumonia, wound infection, intra-abdominal abscess, urinary infection and length of hospital stay. Results: Thirteen trials (total, 1301 patients) were included based on the criteria. Perioperative pro-/synbiotic administration was associated with a significant reduction in total postoperative infectious complications (RR 0.58, 95% CI, 0.46 to 0.73, \(P < 0.00001 \)), pneumonia (RR 0.31, 95% CI, 0.14 to 0.66, \(P = 0.003 \)), wound infection (RR 0.66, 95% CI, 0.49 to 0.88 \(P = 0.005 \)) and length of hospital stay (WMD -1.97, 95% CI, -3.44 to -0.50, \(P = 0.009 \)) in patients undergoing elective colorectal surgery. No significant differences were found in the incidence of intra-abdominal abscess or urinary infection. Conclusion: Perioperative pro-/synbiotic administration in patients undergoing elective colorectal surgery appeared to improve clinical outcomes. Use of multiple trains should be recommended in future clinical practices.

Keywords: Probiotics, synbiotics, colorectal surgery, meta-analysis, randomized controlled trial

Introduction

Colorectal resection is the best treatment for a wide range of colorectal disease, especially for colorectal cancer (CRC) [1]. It is well known that with traditional perioperative care, patients undergoing elective colorectal resection can have a complication rate of 20% to 30% [2]. Many studies reported that preoperative preparation strategies and surgical trauma would break the intestinal microbial balance, restrain the gut barrier function and local immune function, aggravate systemic inflammation, and thus result in postoperative infectious complications [3, 4]. Postoperative infectious complication remains a major cause of prolonged length of hospital stay, an increase in medical costs, a poor postoperative life quality and various other problems in patients undergoing surgical procedures [5].
microbial environment, enhance immune responses, attenuate systemic inflammatory responses and reduce postoperative complications in patients who undergoing liver transplant and upper gastrointestinal surgery [14-16]. A meta-analysis also showed that probiotic and synbiotic nutrition strategies reduce the incidence of postoperative sepsis in the elective general surgery [17].

For colorectal surgery, evidence from clinical studies about the effect of probiotics remains controversial. A previous meta-analysis has shown that perioperative pro-/synbiotic therapy is associated with a significant reduction of postoperative total infections, pneumonia, diarrhea and symptomatic intestinal obstructions [18]. However, as small numbers of included studies, evidence has not been strong enough. A recent clinical trial even indicated that probiotics did not reduce the rates of incisional surgical-site infection and even increased rates of leakage [19], while another clinical trial indicated that a probiotic formulation significantly decreased the risk of postoperative complications such as infections and anastomotic leakage [20]. With more and more recent randomized controlled trials (RCTs) comparing pro-/synbiotics with traditional care in patients undergoing colorectal surgery were published, we performed this meta-analysis to assess the efficacy of perioperative pro-/synbiotic administration in patients undergoing elective colorectal surgery, based on the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement [21]. If any, this may justify the positive effect of perioperative pro-/synbiotic administration in the future.

Materials and methods

Literature search

Studies published up to October 2015 were searched in PubMed, Embase, Cochrane Library and Web of Science. No language restrictions were applied. Two reviewers (W.Z. Chen and J.X. Lu) generated the search strategy. We also searched unpublished trials and conference proceedings through the System for Information on Grey Literature in Europe, the National Research Register (UK) and International Clinical trials Registry Platform in case to prevent clinical trials which meet the criteria from being omitted. First, article titles and abstracts were screened, and then full texts were reviewed independently by two investigators (W.Z. Chen and J.X. Lu). Discrepancies were resolved by the reviewers. If a consensus could not be reached between the first two reviewers, a third reviewer (L.F. Ding) would take part in the discussion to resolve conflict. The literature search strategy for PubMed was showed in Table 1.
Pro-/synbiotic use for colorectal surgery

Inclusion and exclusion criteria

From the eligible studies, we selected RCTs with the use of a probiotic, prebiotic, or synbiotic agent in adult patients (aged > 18 years) undergoing elective colorectal surgery. Studies were required to report at least one of the outcome measures mentioned below. When more than one version of the same study was found, only the most recent version or the one with complete data was included. In case of disagreement, full texts were obtained for final judgment by two reviewers (W.Z. Chen and J.X. Lu); otherwise a third reviewer (L.F. Ding) would take part in the discussion as a referee.

Excluded studies 1) were classified as non-RCTs (such as nonrandomized, quasi-randomized, pseudo-randomized, clinical controlled trials or cohort or retrospective studies); 2) were with patients received chemotherapy or radiotherapy; 3) involved emergency surgery or pediatric surgery.

Data extraction and outcomes

Two reviewers (W.Z. Chen and J.X. Lu) extracted all relevant data from each eligible study using a standardized reporting form independently. Discrepancies were resolved by discussion between the reviewers and review of the original articles. Extracted information from each eligible study included 1) study information, including name of the first author, year of publication, country, number of patients in each group, length of treatment, type of intervention and control; 2) patient information including age, sex and type of surgery; 3) outcome measures.

Primary outcome measures included 1) incidence of total postoperative infectious complications (defined as any infectious complication reported within the postoperative period), pneumonia, wound infection, intra-abdominal abscess and urinary infection; 2) the numbers of bacteria (including Enterobacteriaceae, Bifidobacterium, Lactobacillus, and Enterococcus) in the postoperative fecal bacterial colonies; 3) the culture of mesenteric lymph nodes (MLN) for bacterial translocation (BT) (defined as the percentage of positive culture in MLN).

Secondary outcome measures included 1) time to first passage of flatus and stool and 2) length of hospital stay (LOS, defined as the number of days in hospital after surgery until discharge).

Assessing quality of trials

The quality of methodology of the included studies was assessed independently by two reviewers (W.Z. Chen and J.X. Lu) with the use of the Cochrane Collaboration's risk of bias tool [22]. In addition, a previously validated score called Jadad Scale was used to evaluate the quality of RCTs [23]. The total score ranges from 0 to 5, with 5 being optimal. Studies scoring 3 to 5 are considered to be of higher quality.

Statistical analysis

For continuous outcome data, means and standard deviations (SD) were used to calculate a weighted mean difference (WMD) in the meta-analysis. Data reported as medians and ranges or medians and interquartile ranges were converted to means and SD by some formulas [24]. For dichotomous outcomes, the relative risk (RR) was calculated. Data were analyzed using Review Manager software version 5.0 from the Cochrane Collaboration. Effect estimates were presented with 95% confidence intervals (CIs). The presence and amount of heterogeneity was tested using Q test and I² index [25], P < 0.1 denoted the presence of significant heterogeneity. Subgroup analyses were performed based on type of strain (multiple or single) and time of pro-/synbiotic administration (perioperative or pre-/postoperative). The fixed-effects model was used when there was little evidence of heterogeneity; otherwise, a random-effects model was used. Funnel plots were used to assess the potential publication bias. For all comparisons, statistical significance was defined as P < 0.05 and all tests were two-sided.

Results

Included studies

The initial literature search identified 1400 potentially relevant studies, of which 1387 were excluded owing to the exclusion criteria or other insufficient details. Thirteen RCTs were included in the meta-analysis (Figure 1) [4, 19, 20, 26-35]. These studies were published between 2007 and 2015, with a total of 1301 patients, ranging from 18 to 362 patients. Only two of the included studies were multiple-center studies, others were studied in single center. The RCTs scored a mean of 4.0 (range 3-5)
on the Jadad Scale. The characteristics of the included studies are showed in Table 2.

Figure 2 shows evaluation of risk of bias for the included studies. Six studies were adequate in random sequence generation, five studies were unclear; allocation concealment was adequate in five studies and unclear in six studies; four studies were double blind and adequate in blinding of outcome assessment; seven of included studies were at low risk of bias for incomplete outcome data and ten were at low risk of bias for selective reporting. All of the included trials were completely free from other bias.

Primary outcome measures

The results from meta-analysis of primary outcome measures were showed in Table 3. The incidence of total postoperative infectious complications was reported in nine studies [4, 19, 20, 27-29, 33-35]. Patients in the pro-/synbiotic group had a significantly fewer total postoperative infectious complications (nine RCTs, 1138 patients, RR 0.58, 95% CI, 0.46 to 0.73, \(P < 0.00001 \)), with little evidence of heterogeneity between trials (\(\chi^2 = 12.76, P = 0.12, I^2 = 37\% \)) (Figure 3).

There were lower incidence of pneumonia in the pro-/synbiotic group (five RCTs, 480 patients, RR 0.31, 95% CI, 0.14 to 0.66, \(P = 0.003 \)), with little evidence of heterogeneity between trials (\(\chi^2 = 1.24, P = 0.87, I^2 = 0\% \)) [4, 20, 28, 29, 33] (Figure 4). There were lower incidence of wound infection in the pro-/synbiotic group (eight RCTs, 1105 patients, RR 0.66, 95% CI, 0.49 to 0.88 \(P = 0.005 \)), with little evidence of heterogeneity between trials (\(\chi^2 = 6.71, P = 0.46, I^2 = 0\% \)) [4, 19, 20, 27-29, 33, 34] (Figure 5).

However, there were no statistically significant differences in intra-abdominal abscess [4, 19, 20, 28, 29, 35] or urinary infection [20, 28, 33, 35] (six RCTs, 558 patients, RR 0.58, 95% CI, 0.26 to 1.28, \(P = 0.18, I^2 = 0\% \); four RCTs, 411 patients, RR 0.55, 95% CI, 0.26 to 1.17, \(P = 0.12, I^2 = 32\% \); respectively).

Four studies involved the applicable data on postoperative fecal bacterial colonies (Figure 6). Overall, the numbers of Enterobacteriaceae were significantly lower in the pro-/synbiotic group (four RCTs, 215 patients, WMD -0.79, 95% CI, -1.39 to -0.20, \(P = 0.009 \)), with some evidence of heterogeneity between trials (\(\chi^2 = 36.40, P < 0.00001, I^2 = 92\% \)) [26, 28-30]. However, there were no apparently differences in the numbers of Bifidobacterium [29, 30], Lactobacillus [26, 28, 30] or Enterococcus [26, 30] (two RCTs, 120 patients, WMD 2.69, 95% CI, -1.64 to 7.02, \(P = 0.22, I^2 = 100\% \); three RCTs, 155 patients, WMD 1.93, 95% CI, -1.43 to 5.29, \(P = 0.26, I^2 = 99\% \); two RCTs, 91 patients, WMD 1.42, 95% CI, -2.35 to 5.18, \(P = 0.46, I^2 = 99\% \); respectively).
Table 2. Characteristics of the included studies

<table>
<thead>
<tr>
<th>Reference</th>
<th>No. of patients</th>
<th>Sex(M/F)</th>
<th>Intervention group</th>
<th>Length of treatment (days)</th>
<th>Control group</th>
<th>Type of surgery</th>
<th>Jadad score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reddy 2007 (United Kingdom)</td>
<td>20/22</td>
<td>68.5(62.5-74)/72.5(53-81)</td>
<td>9/11/La5, L. bulgaricus, BB-12 and S. thermophilus</td>
<td>NR/Neomycin + MBP</td>
<td>RHC, LHC, AR, APR, HP, SC, PPC</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Gianotti 2010 (Italy)</td>
<td>21/10</td>
<td>63.7(6.3)/63.3(10.2)</td>
<td>15/6/La1 and BB536</td>
<td>6/placebo</td>
<td>LHC, RHC, AR</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Horvat 2010 (Slovenia)</td>
<td>48/20</td>
<td>62(29-86)/65(52-78)</td>
<td>19/29/multi-strain/-fiber Synbiotic 2000™</td>
<td>3/oral solution</td>
<td>LHC, RHC, RTC, RSR, LAR</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Mangell 2012 (Sweden)</td>
<td>32/32</td>
<td>74(70-80)/70(64-79)</td>
<td>16/16/Lp 299v</td>
<td>13/placebo</td>
<td>LHC, RHC, IR, RTC, RSR, PPC</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Zhang 2012 (China)</td>
<td>30/30</td>
<td>67.5(45-87)/61.5(46-82)</td>
<td>10/20/BB536, La 5 and E. faecalis</td>
<td>3/placebo</td>
<td>LHC, RHC, RSR, AR, APR</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Zhu 2012 (China)</td>
<td>30/30</td>
<td>61.2(10.5)</td>
<td>36/24/BB536, La 5 and E. faecalis</td>
<td>12/MBP</td>
<td>LCRS</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Krebs 2013 (Slovenia)</td>
<td>38/16</td>
<td>65(43-87)</td>
<td>21/33/lactobacilli and prebiotics</td>
<td>3/MBP</td>
<td>SR, LHC, RHC, AR, RTC</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Pellino 2013 (Italy)</td>
<td>10/8</td>
<td>71.5(2.1)/72.9(1.6)</td>
<td>5/5/S. thermophiles, B., Lattobacilli</td>
<td>28/placebo</td>
<td>LCRS</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Liu 2013 (China)</td>
<td>75/75</td>
<td>66.06(11.02)/62.28(12.41)</td>
<td>38/37/L. plantarum, L. acidophilus-11 and B. longum-88</td>
<td>16/placebo</td>
<td>RTC, RHC, SR, AR</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Sadahiro 2014 (Japan)</td>
<td>100/95</td>
<td>67(9)/66(12)</td>
<td>49/51/Bifidobacteria</td>
<td>17/Neomycin</td>
<td>LHC, RHC, RTC, LCRS</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Kottzammpassi 2015 (Greece)</td>
<td>84/80</td>
<td>65.9(11.5)/64.6(11.9)</td>
<td>57/27/La 5, Lp, BB-12 and Sb</td>
<td>16/placebo</td>
<td>LAR, RSR, RHC, TC</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Komatsu 2015 (Japan)</td>
<td>168/194</td>
<td>66.7(11.6)/67.7(10.7)</td>
<td>92/76/L. casei and B. breve</td>
<td>13-17/Neomycin</td>
<td>RHC, LHC, LAR, APR</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Consoli 2015 (Brazil)</td>
<td>15/18</td>
<td>51(28-76)/59(17-83)</td>
<td>5/10/S. boulardii</td>
<td>7/Neomycin</td>
<td>RHC, LHC, TC</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Values in brackets are either SD or a range. IG = Intervention group; CG = Control group; NR = Not report; NP = No placebo; L = Lactobacillus; B. = Bifidobacterium; E. = Enterococcus; S. = Streptococcus; La1 = L. johnsonii; La5 = L. acidophilus; BB12 = B. lactis; BB536 = B. longum; Lp 299v = Lactobacillus plantarum 299v; Sb = Saccharomyces boulardii; RHC = Right hemicolectomy; LHC = Left hemicolectomy; AR = Anterior resection; APR = Abdominoperineal resection; HP = Hartmann’s procedure; SC = Subtotal colectomy; PPC = Panproctocolectomy; RTC = Resection of transverse colon; RSR = Rectosigmoid resection; LAR = Low anterior resection; IR = Ileoceleal resection; LCRS = Laparoscopic colorectal surgery; SR = Sigmoid resections; TC = Total colectomy.
There was no significant difference in the culture of MLN for BT compared with the control group (three RCTs, 238 patients, RR 0.52, 95% CI, 0.13 to 1.98, \(P = 0.34 \), \(I^2 = 79\% \)) [4, 28, 33].

Secondary outcome measures

Table 4 showed the results from meta-analysis of secondary outcome measures. The time to first passage of flatus and stool was reported in two studies [28, 31], LOS was reported in another two studies [29, 32]. There was a significantly shorter time to first passage of flatus and LOS in the pro-/synbiotic group (two RCTs, 118 patients, WMD -0.67, 95% CI, -1.05 to -0.29, \(P = 0.0006 \), \(I^2 = 0\% \); two RCTs, 78 patients, WMD -1.97, 95% CI, -3.44 to -0.50, \(P = 0.009 \), \(I^2 = 0\% \); respectively). However, there was no significant difference in the time to first passage of stool (two RCTs, 118 patients, WMD 0.17, 95% CI, -0.31 to 0.65, \(P = 0.49 \), \(I^2 = 0\% \)).

Subgroup analysis

For subgroup analysis based on multiple or single strain(s), only in the multiple strains subgroup, there was a significant reduction in total postoperative infectious complications (\(P < 0.00001 \), \(I^2 = 36\% \) vs. \(P = 0.30 \), \(I^2 = 0\% \)), pneumonia (\(P = 0.002 \), \(I^2 = 0\% \) vs. \(P = 1 \)), wound infection (\(P = 0.001 \), \(I^2 = 0\% \) vs. \(P = 0.99 \), \(I^2 = 0\% \)), urinary infection (\(P = 0.03 \), \(I^2 = 29\% \) vs. \(P = 0.33 \), \(I^2 = 0\% \)) and the numbers of Enterobacteriaceae in the postoperative fecal bacterial colonies (\(P < 0.00001 \), \(I^2 = 80\% \) vs. \(P = 0.71 \)), and a significant increase in the numbers of Lactobacillus in the postoperative fecal bacterial colonies (\(P = 0.04 \), \(I^2 = 98\% \) vs. \(P = 0.10 \)). Due to the limited data, the subgroup analyses were not performed in other outcomes (Figures 3-6).

Publication bias

The funnel plot was not synthesized to determine the presence of publication bias due to the limited number of trails included in this meta-analysis.

Discussion

The results of this meta-analysis suggested that perioperative pro-/synbiotic administration is associated with a significant reduction in total postoperative infectious complications, pneumonia, wound infection, the numbers of Enterobacteriaceae in the postoperative fecal bacterial colonies, the time to first passage of flatus and length of hospital stay in patients undergoing elective colorectal surgery.

The present study was based on 13 RCTs, 1301 patients in total. There has been one previously published meta-analysis about the effect of probiotics on colorectal resection [18]. As the increased number of included studies could enhance the quality of evidence [36], the updated meta-analysis included 13 studies, and 9 of these studies (1102 patients) were published after the previous published meta-
Pro-/synbiotic use for colorectal surgery

The present study is the first meta-analysis to demonstrate that perioperative pro-/synbiotic administration is associated with a significant reduction in the wound infection and a significantly shorter time to first passage of flatus and length of hospital stay in patients undergoing elective colorectal surgery.

Perioperative pro-/synbiotic administration was reported to have positive effect on different surgical patients. When it was used in patients undergoing surgery in the upper gastrointestinal tract or liver transplantation, the results showed a reduction in rate of postoperative infections [37, 38]. In this meta-analysis, we

Table 3. The results from meta-analysis of primary outcome measures

<table>
<thead>
<tr>
<th>Groups</th>
<th>No. of studies</th>
<th>95% Cls</th>
<th>Statistical method</th>
<th>P-value</th>
<th>HG P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious complications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total infectious complications</td>
<td>9</td>
<td>0.58 [0.46, 0.73]</td>
<td>RR (Fixed)</td>
<td>< 0.00001</td>
<td>0.12</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>5</td>
<td>0.31 [0.14, 0.66]</td>
<td>RR (Fixed)</td>
<td>0.003</td>
<td>0.87</td>
</tr>
<tr>
<td>Wound infection</td>
<td>8</td>
<td>0.66 [0.49, 0.88]</td>
<td>RR (Fixed)</td>
<td>0.005</td>
<td>0.46</td>
</tr>
<tr>
<td>Intra-abdominal abscess</td>
<td>6</td>
<td>0.58 [0.26, 1.28]</td>
<td>RR (Fixed)</td>
<td>0.18</td>
<td>0.52</td>
</tr>
<tr>
<td>Urinary infection</td>
<td>4</td>
<td>0.55 [0.26, 1.17]</td>
<td>RR (Fixed)</td>
<td>0.12</td>
<td>0.22</td>
</tr>
<tr>
<td>Fecal bacterial colonies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterobacteriaceae</td>
<td>4</td>
<td>-0.79 [-1.39, -0.20]</td>
<td>WMD (Random)</td>
<td>0.009</td>
<td>< 0.00001</td>
</tr>
<tr>
<td>Bifidobacterium</td>
<td>2</td>
<td>2.69 [1.64, 7.02]</td>
<td>WMD (Random)</td>
<td>0.22</td>
<td>< 0.00001</td>
</tr>
<tr>
<td>Lactobacillus</td>
<td>3</td>
<td>1.93 [1.43, 5.29]</td>
<td>WMD (Random)</td>
<td>0.26</td>
<td>< 0.00001</td>
</tr>
<tr>
<td>Enterococcus</td>
<td>2</td>
<td>1.42 [-2.35, 5.18]</td>
<td>WMD (Random)</td>
<td>0.46</td>
<td>< 0.00001</td>
</tr>
<tr>
<td>Culture of MLN for BT</td>
<td>3</td>
<td>0.52 [0.13, 1.98]</td>
<td>RR (Random)</td>
<td>0.34</td>
<td>0.009</td>
</tr>
</tbody>
</table>

RR = Relative risk; WMD = Weighted mean difference; HG = Heterogeneity; POD = Postoperative day; MLN = Mesenteric lymph nodes; BT = Bacterial translocation.

Figure 3. Forest plot for effect of pro-/synbiotics on the total postoperative infectious complications (subgroup analysis based on multiple or single strain(s)) M-H = Mantel-Haenszel test.
found that the perioperative use of pro-/synbiotics was beneficial in reducing the incidence of total postoperative infectious complications, pneumonia and wound infection. In addition, results from subgroup analysis showed that the use of multiple strains seemed to have beneficial effects on total postoperative infectious complications, pneumonia, wound infection and urinary infection. However, some latest clinical trials included in the present meta-anal-

Figure 4. Forest plot for effect of pro-/synbiotics on the pneumonia (subgroup analysis based on multiple or single strain(s)). M-H = Mantel-Haenszel test.

Figure 5. Forest plot for effect of pro-/synbiotics on the wound infection (subgroup analysis based on multiple or single strain(s)). M-H = Mantel-Haenszel test.
ysis had a contrary conclusion, indicating that probiotics did not significantly prevent infection after elective colon cancer surgery [19, 34, 35]. The inconsistent effects of pro-/synbiotics on the reduction of postoperative infection rate in different surgeries could be explained in two aspects. First, the conditions for use of probiotics or synbiotics in colon or rectum might be different from other digestive organs such as the upper gastrointestinal tract, pancreas, and liver, because the number of mucosa-associated bacteria in colon and rectum plays an impor-
Pro-/synbiotic use for colorectal surgery

Substantial statistical heterogeneity was detected in the analysis of postoperative fecal bacterial colonies and the culture of MLN for BT. In order to explore the sources of heterogeneity, subgroup analysis based on multiple or single strain(s) and perioperative or pre-/post-operative pro-/synbiotic administration were performed. However, subgroup analysis could not explore the sources of heterogeneity in the analyses of the postoperative fecal bacterial colonies and the culture of MLN for BT. As these two outcomes were measured in the laboratory, so the differences in testing methods may contribute to the heterogeneity of these two outcomes. In addition, apart from type of strain and time of pro-/synbiotic administration, some other clinical heterogeneity still existed between the included studies, such as different dose of pro-/synbiotic and use of MBP before surgery. There was no reporting of a guideline of perioperative pro-/synbiotic administration

in patients undergoing elective colorectal surgery in these studies. We wish the present meta-analysis could give a strong evidence for the guideline of perioperative pro-/synbiotic administration in the future. MBP has been one of the routine preoperative preparation strategies for colorectal cancer surgery for many years and medical care guidelines consent to this regimen, even though controversy surrounds it [42]. However, many previous meta-analyses showed that MBP had the futility in reducing postoperative complications and motility [43, 44]. So MBP had less influence on our meta-analysis.

There were several limitations to the present meta-analysis. First, the evidence of some outcome measures seemed not to be at high level because of the limited data in the included studies. However, we had made a comprehensive literature search to extract all useful data and the sample size was large in the analyses of most primary outcomes. Second, the included studies were unable to determine which specific strain is the most effective. Third, some studies included in this meta-analysis had small sample size, indicating that the reliability and validity of the conclusions might be influenced to a certain extent. Fourth, the publication bias probably exists owing to the limited number of trails, so we enhanced our literature search to minimize publication bias. Finally, across the included studies, there was not a standardized reporting of surgical methodology. The variability in surgical technique may influence the gut flora unintentionally. Due to these limitations, our conclusions were made prudently.

Conclusions

In summary, despite the limitations in the included studies, the evidence from the present meta-analysis showed perioperative pro-/synbiotic administration may prevent total postoperative infectious complications, pneumonia.
and wound infection, reduce the time to first passage of flatus and length of hospital stay in patients undergoing colorectal surgery. Use of multiple trains should be recommended in future clinical practices. Further clinical trials should be well-designed to make a precise therapeutic schedule about optimal type dosage and administration time to assess the efficacy and safety of pro-/synbiotics.

Acknowledgements

This study was supported by the clinical nutriology area of the medical support discipline of Zhejiang Province (No. 11-ZC24).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Zhen Yu, Department of General Surgery, Shanghai Tenth People’s Hospital Chongming Branch, No. 66 Xiangyang East Road, Chongming County, Shanghai 202157, China. Tel: +86 021 59418281; Fax: +86 021 59410409; E-mail: yuzhen0577@gmail.com

References

[41] Pittsoumi E, Alexiou V, Saridakis V, Peppas G and Falagas ME. Does the use of probiotics/synbiotics prevent postoperative infections in colorectal surgery? Pro-/synbiotic use for colorectal surgery.

