Review Article
Progress of positron emission tomography/computed tomography in the management of nasopharyngeal carcinoma

Min Zhou1,2*, Hui Liu3*, Dalong Tian3, Shengming Deng1, Bin Zhang1

1Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, PR China; 2Department of Nuclear Medicine, Yancheng City No. 1 People’s Hospital, Yancheng, PR China; 3Department of Radiation Oncology, Yancheng City No. 1 People’s Hospital, Yancheng, PR China. *Equal contributors.

Received January 12, 2016; Accepted March 27, 2016; Epub June 15, 2016; Published June 30, 2016

Abstract: Nasopharyngeal carcinoma (NPC) is an aggressive malignancy in the head and neck. South China is one of the areas with the highest occurrence of this disease. Radiotherapy is the primary therapeutic modality for NPC. Early accurate diagnosis and staging provide important value to NPC treatment. Nuclear medical imaging technologies, particularly positron emission tomography/computed tomography (PET-CT), have shown significant application value in the clinical diagnosis, staging, treatment, and prognosis of NPC in recent years. This review summarizes the recent advances in the development of PET-CT in the diagnosis, staging, treatment, and prognosis of NPC.

Keywords: Nasopharyngeal carcinoma, PET-CT

Introduction

As an aggressive malignancy in the head and neck, nasopharyngeal carcinoma (NPC) presents early symptoms that are not obvious, but this disease exhibits high-metastatic potential. At the time of diagnosis, > 60% of NPC patients showed locally advanced disease, and approximately 5%-8% of these patients presented distant metastasis [1, 2]. In 2012, up to 86,000 new cases of NPC were diagnosed worldwide; only 6% were detected in Europe, and 80% occurred in Asia [3]. China is one of the countries with the highest occurrence of NPC; this country presents an extremely unbalanced epidemiology and geographic distribution, with the highest incidence between 20 and 50 individuals per 100,000 males in Southeast China [4]. Genetic, ethnic, and environmental factors play important roles in the etiology of NPC. Thus, NPC always presents significant racial, regional, and familial aggregation phenomena [5]. In non-endemic areas, the major histological type of NPC is keratinizing squamous-cell carcinoma, whereas > 95% of NPC cases are non-keratinizing carcinoma in endemic areas [6, 7]. Several critical structures are adjacent to the nasopharynx, including the parotid glands, eyes, brain stem, and spinal cord. Given the complexity of anatomical features, characteristics of infiltrative growth, and radiosensitivity, radiotherapy (RT) has become the primary therapeutic modality for early-stage NPC [8]. At the time of diagnosis, most NPC patients presented with stage III or IV of the disease and displayed poor prognosis [9]. The five-year overall survival rates ranged from 70.0% to 81.7% [10-14]. Recurrence and metastasis often occurred after treatment of locally advanced NPC. The primary failure model was distant metastasis, followed by local regional recurrence and regional lymph node metastasis [15, 16]. To improve the efficacy of treatment, NPC relies on early diagnosis and reasonable treatment.

To date, computed tomography (CT) and magnetic resonance imaging (MRI) are mainly used to display pharyngeal soft tissues, the nasopharyngeal cavity, and the scope of tumor lesions. Both methods provide intuitive imaging for RT or surgery. The advantages of MRI include its high-resolution images of soft tissues and its multidirectional and multiple-parameter imaging. MRI can demonstrate parapharyngeal
PET/CT in the management of nasopharyngeal carcinoma

space, perineural tumor spread, and bone marrow involvement. Moreover, MRI can show the involvement of adjacent structures, such as paranasal sinuses. Both CT and MRI depend on the size and shape of the lesions, and their specificity is low. Pathological examination is the most feasible way to diagnose local residual and recurrent tumors of NPC, but it is difficult to conduct when the tumors are located in the submucosa or relapsed in deep positions [17].

Nuclear medical imaging is a functional and molecular imaging technique, which involves positron emission tomography (PET)/computed tomography (CT) and single-photon emission computed tomography (SPECT) imaging. This technique plays an important role in the diagnosis, staging, treatment, and prognosis of NPC. The present review summarizes the recent advances in the development of nuclear medical imaging in the diagnosis, staging, treatment, and prognosis of NPC.

18F-FDG PET/CT in NPC diagnosis and treatment

Principle of FDG PET/CT

Fluorodeoxyglucose (FDG) is a glucose analog that has been labeled by fluorine-18 (18F). 18F-FDG is the most widely used PET radiotracer [18]; with the same mechanism as glucose, FDG is absorbed by cells depending on the hexokinase and glucose transporters and then rapidly excreted by renal tissues [19]. The radioactive half-life of 18F is 110 min. 18F emits a positron, which counters an electron of the tumor cells and is converted into two 511 KeV gamma photons (annihilate radiation) in the opposite direction. The two gamma photons are detected by the detector of PET, and the signals are converted into metabolic functional imaging. FDG is a safe radioactive drug with no pharmacological adverse reactions, as evidenced by numerous patients that have used this drug [20]. PET/CT performs functional and morphological imaging in the same process by combining PET and CT in one imaging device.

18F-FDG PET/CT imaging reflects human tissues at the molecular level of physiological, pathological, biochemical, and metabolic changes.

18F-FDG PET/CT plays an important role in the treatment and management of NPC. 18F-FDG PET/CT fundamentally addresses the limitation regarding the vagueness of anatomical structures on nuclear medical images. Simultaneously, nuclear medical imaging by X-ray attenuation correction significantly improves the accuracy of diagnosis and realizes the complementary advantages of information on molecular metabolism and anatomy.

Staging

As the basis of clinical treatment, accurate staging directly influences the efficacy and prognosis. Abnormal glucose metabolism is usually detected in NPC lesions. 18F-FDG PET/CT imaging results present more apparent characteristics. CT mainly shows the nasopharyngeal mass lesions or localized thickening of soft tissues, whereas PET displays the corresponding active and high metabolism. Previous studies indicated that 18F-FDG PET/CT provide high application value in the diagnosis of NPC primary tumors, cervical lymph nodes, and/or distant metastases [21-25].

Vellayappan et al. [26] performed a meta-analysis to study the accuracy of 18F-18F-FDG PET/CT in the staging of NPC, and their research involved 851 patients from 15 relevant studies. The combined sensitivity in the T, N, and M classification was 0.77 (95% confidence interval, CI: 0.59-0.95), 0.84 (95% CI: 0.76-0.91), and 0.87 (95% CI: 0.74-1.00), respectively. The combined specificity in the N and M classification was 0.90 (95% CI: 0.83-0.97) and 0.98 (95% CI: 0.96-1.00), correspondingly. The diagnostic odds ratios (DORs) in the N and M classification were 82.4 (95% CI: 23.2-292.6) and 120.9 (95% CI: 43.0-340.0), respectively. The results showed that FDG-PET/CT presented good accuracy in the N and M classification for the staging of NPC [26].

The accurate judgment of the lymph node metastasis of NPC is important because of its high metastasis rate. The conventional work-up (CWU) CT/MRI mainly evaluated the lymph nodes according to their size, but the metastatic lymph nodes and reactive nodes are difficult to distinguish based on the CT/MRI size and morphological criteria [27]; thus, false positives or false negatives may appear. 18F-FDG PET/CT can more accurately determine lymph node properties based on glucose metabolism. Compared with CT/MRI, 18F-FDG PET/CT can detect smaller positive lymph nodes. Numerous studies indicated that PET/CT is superior to
other modalities (CT or MRI) in the initial staging because of the discovery of unexpected cervical lymph nodes, which were not detected by the CWU [21, 28-30]. A meta-analysis by Shen et al. [31], which included 20 studies of 7 databases (4 in English and 3 in Chinese) from January 1990 to June 2013, indicated that PET or PET/CT demonstrates good diagnostic performance for detecting lymph nodes in NPC patients; the combined sensitivity of PET or PET/CT in N and M classification was 0.89 [95% CI, 0.86-0.91] and 0.96 (95% CI, 0.95-0.96), respectively [31].

RT of NPC demonstrates good effects, although the incidence rate of distant metastases is high. The accurate description of distant metastasis is important for the treatment planning of NPC. The CWU for distant metastasis detection of NPC includes a bone scan, chest X-ray, and abdominal ultrasound examination. However, all these methods face significant limitations. Early bone marrow metastases are not easily detected by bone scan. Similarly, early mediastinal or lung metastases are difficult to be detected by chest X-ray. Ultrasound cannot effectively distinguish between benign and malignant lesions because the results of ultrasound technology mainly rely on the operator.

Previous studies suggest that 18F-FDG PET/CT is superior to CWU for detecting distant metastases [31-36]. Chang et al. [36] reported a systematic review and meta-analysis on the accuracy of FDG-PET and FDG-PET/CT in the M staging of NPC, which included eight studies from October 1996 to September 2011. The sensitivity was 0.83 (95% CI, 0.77-0.88), whereas the specificity was 0.97 (95% CI, 0.95-0.98); the positive likelihood ratio was 23.38 (95% CI, 16.22-33.69), and the negative likelihood ratio was 0.19 (95% CI, 0.13-0.25). Their results showed that FDG-PET or PET/CT demonstrates good diagnostic efficiency in detecting distant metastases of NPC [36]. Lin et al. [37] reported the efficiency of detecting distant metastasis of NPC by PET/CT and CWU. A total of 514 patients were randomly divided into two groups: 216 patients in the PET/CT group and 298 patients in the CWU group. The sensitivity and specificity between the two groups were not statistically significant, but the numbers of patients with multiple organ metastases and multiple distant metastases were higher in the PET/CT group than in the CWU group ($P < 0.05$). These results showed that PET/CT is superior to CWU for detecting the distant metastasis of NPC [37].

Radiotherapy treatment planning

18F-FDG PET/CT plays an increasingly important role in the cancer imaging of RT planning, and its positive effects have been reported [30, 38-40]. The sensitivity and contrast resolution of PET/CT are superior to the anatomical imaging techniques in the delineation of target volumes and organs at risk, with which RT planning can be optimized [41]. Several studies suggest that PET-CT exerts a significant effect on the gross tumor volume (GTV). Previous research indicated that the GTV delineated by PET/CT is smaller than that delineated by CWU [42-45].

Further studies on 18F-FDG PET-CT for RT planning can improve the dose-escalation RT for NPC to enhance the therapeutic efficacy and reduce toxicity [30, 40, 42, 46]. Wang et al. [47] conducted a randomized pilot trial on PET-guided dose-escalation RT for chemoradiotherapy of locally advanced NPC. The results suggested that the PET/CT-guided dose-escalation radiotherapy for locally advanced NPC is superior to conventional chemoradiotherapy [47].

Treatment response assessment

Accurate response assessment is important in the treatment of NPC patients. At present, treatment response assessment of patients with NPC is often based on the radiographic changes in tumor size or the alterations of clinical symptoms. The morphological changes of tumors after treatment often lag behind tumor cell death. Although the tumor mass narrowed after treatment, a certain number of tumor cells remained alive. Therefore, CWU methods cannot evaluate the treatment response in a timely and accurate manner. PET/CT can provide a reliable basis for early assessment after treatment or tumor metabolism to evaluate the tumor remnants at the clinical and subclinical levels. Many studies have indicated that PET/CT imaging can be effective for NPC treatment response evaluation [31, 48-49]. Yuan et al. [50] reported a study on the early evaluation of radiotherapeutic effects of NPC xenografts in nude mice via 18F-FDG PET-CT. The average death ratio was significant on day 6 after radiotherapy and at the other time points ($P < 0.05$).
PET/CT in the management of nasopharyngeal carcinoma

[50]. Su et al. [51] suggested that the maximum standard uptake value (SUV\textsubscript{max}) of the primary tumor before treatment is an independent predictor of tumor response in NPC.

Prognostic significance of PET-CT

Although NPC is highly sensitive to radiation, local recurrence and distant metastasis are still the major modes of failure in NPC patients [52]. Thus, the search for prognostic factors and the optimization of individualized treatment are particularly important for NPC patients. Numerous studies showed that the standard uptake value (SUV), metabolic tumor volume (MTV), and total lesion glucose (TLG) are useful predictive factors for NPC patients [53-57]. Shi et al. [58] used \(^{18}\)F-FDG PET-CT parameters to predict distant metastasis for NPC patients, which included 43 newly diagnosed NPC patients. The parameters were the mean standardized uptake value (SUV\textsubscript{mean}), maximum standardized uptake value (SUV\textsubscript{max}), MTV, and TLG of primary tumors and cervical lymph nodes. The results suggested that the total SUV\textsubscript{max} is an independent predictive factor for distant metastasis [58]. A retrospective study by Yoon et al. [59] reported the prognostic value of MTV in NPC patients. The authors assessed the prognostic factors of MTV\textsubscript{2.5}, MTV\textsubscript{3.0}, SUV\textsubscript{max}, and other factors with the overall survival (OS) by using Kaplan-Meier and Cox regression models. The results indicated that MTVs (particularly MTV\textsubscript{2.5} and MTV\textsubscript{3.0}) can be valuable prognostic factors for predicting long-term survival in NPC patients [59]. Recently, the prognostic value of volume-based PET/CT was studied in NPC patients treated with concurrent chemoradiotherapy (CCRT) [60]. The authors concluded that TLG is a significant independent metabolic prognostic factor of disease-free survival (DFS) in NPC patients treated with CCRT [60]. Other studies suggested that tumor heterogeneity is also a potential predictor of NPC patient survival after treatment [61, 62].

Diagnosis of residual and recurrent tumors

After radiotherapy, chemotherapy, and even targeted therapy, the nasopharyngeal mucosa can appear to display a series of changes, such as fibrosis, loss of tissue planes, edema, scarring, and mucositis. These changes may interfere with the diagnosis of residual and recurrent tumors. PET/CT is a functional imaging technique with high sensitivity and specificity for the diagnosis of residual and recurrent tumors in NPC patients [63]. Some studies showed that PET/CT played an important role in detecting the residual and recurrent tumors in NPC patients [64, 65]. Chen et al. [66] reported the value of FDG PET-CT with pathology in diagnosing residual tumors in NPC patients after radiotherapy. The specificity of FDG PET-CT and MRI and the pathological tumor response in diagnosing residual tumors were 77.3%, 9.1%, and 95.5% (P < 0.001), whereas the accuracy rates were 78.9%, 14.9%, and 95.7%, respectively (P < 0.001). These results suggest that PET-CT combined with pathological tumor response is beneficial for the early diagnosis of residual nasopharyngeal tumors after radiotherapy [66].

Application of other positron imaging agents in PET/CT

\(^{18}\)F]-3'-Fluoro-3'-deoxythymidine (FLT) is a thymine analogue used as an imaging agent to quantify cellular proliferation and was first reported by Shields in 1998 [67]; the in vitro experiment showed that \(^{18}\)F-FLT is a good substrate for cytosolic thymidine kinase (TK-1). FLT imaging can reflect the activity of TK-1, which is correlated with the number of cells in the S-phase of the cell cycle [68]. Recently, Zheng et al. [69] reported that \(^{18}\)F-FLT micro-PET/CT can predict radiosensitivity in NPC xenografts on nude mice models. Other studies suggested that \(^{18}\)F-FLT PET/CT can provide important prognostic information for NPC patients [70, 71].

Choline (CHO) widely exists in cells, and \(^{11}\)C-CHO is an imaging agent used for various tumors [72, 73]. CHO can be quickly incorporated into tumor cells and converted into phosphorylcholine by phosphorylation. The uptake rate of \(^{11}\)C-CHO by tumor cells directly reflects the synthesis rate of tumor cell membranes. A previous study indicated that \(^{11}\)C-CHO PET/CT can improve the quality of PET/CT in the T staging of NPC [74]. Jiang [75] reported the variability of GTV in NPC based on \(^{11}\)C-CHO and \(^{18}\)F-FDG PET/CT; the results suggested that \(^{11}\)C-CHO PET/CT imaging can be introduced as an important complementary tool to decrease inter-observer variation in GTVs obtained for NPC [75].
PET/CT in the management of nasopharyngeal carcinoma

Other positron imaging agents, such as 68Ga, also provide important application value in NPC [76, 77].

Conclusion

Nasopharyngeal carcinoma (NPC) is an aggressive malignancy, early accurate diagnosis and staging provide important value to NPC treatment.

The most recent clinical studies support that PET-CT provides benefits in the diagnosis, staging, therapeutic effect monitoring, and prognosis of NPC. PET/CT also faces limitations, such as the metabolism of inflammatory cells and tuberculosis-infected cells, which can cause false-positive results. At present, PET-CT should be combined with other imaging techniques, such as MRI. The combination of these methods may offer important applications in the diagnosis of NPC in installments, as well as the evaluation of curative effects. However, more multicenter, randomized studies and researches such as imaging biomarkers to guide individual treatment are needed in the future.

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Bin Zhang, Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, PR China. E-mail: zbnuclmd@126.com

References

PET/CT in the management of nasopharyngeal carcinoma

PET/CT in the management of nasopharyngeal carcinoma

PET/CT in the management of nasopharyngeal carcinoma

