Original Article
Induction of intervertebral disc degeneration using annular puncture and establishment of a disc-safe injection method in a rabbit model using an ultrasound-guided percutaneous approach

Qingxin Song1*, Meng Li2*, Junfeng Hong3*, Yixing Tang1, Fan Zhang1, Zhi Chen5, Canglong Hou1, Yifeng Wang1, Songqin Gao4, Kun Wang1, Hongxing Shen1

1Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai 200433, People’s Republic of China; 2Department of Ultrasound, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, People’s Republic of China; 3Department of Ultrasound, Fuzhou General Hospital (Dongfang Hospital), Xiamen University, Fuzhou 350025, Fujian, People’s Republic of China; 4Department of Nursing, Changhai Hospital, Second Military Medical University, Shanghai 200433, People’s Republic of China; 5Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200433, People’s Republic of China. *Equal contributors.

Received November 2, 2015; Accepted February 3, 2016; Epub March 15, 2016; Published March 30, 2016

Abstract: The rabbit annular puncture model of intervertebral disc degeneration (IDD) is among the most widely used models of IDD. We aimed to establish a rabbit model of IDD using a direct, minimally invasive procedure, and to establish a safe approach for disc injection of therapeutic agents. The rabbit model of IDD was established using ultrasound-guided percutaneous annular puncture: 18G to induce disc injury (18G segments), and 27G to evaluate the feasibility and safety of disc injection (27G segments). X-rays, histology and magnetic resonance imaging (MRI) were performed to assess IDD at 4, 8 and 12 weeks after modeling. Disc morphologic changes (by MRI, X-rays and histology), and collagen I and II immunohistochemistry were used to assess IDD. Disc space narrowing was observed as early as 4 weeks and osteophytes were formed at 12 weeks after puncture in the 18G segments, but no such changes occurred in the 27G and control segments. MRI demonstrated a progressive loss of T2WI signal intensity at the 18G segment throughout the 12-week period, while the 27G segment showed only a slight decrease of T2WI signal intensity throughout the 12-week period. Immunohistochemistry showed a progressive loss of the normal architecture and collagens in the 18G segment from 4 to 12 weeks, while the 18G segment showed only a slight change in architecture. These results indicated that using ultrasound-guided percutaneous annular puncture in rabbits; a 27G needle was small enough prevent the induction of IDD and could be a promising method of delivering therapeutic agents into discs.

Keywords: Intervertebral disc disease, rabbit model, ultrasound guidance, puncture, injection

Introduction

Intervertebral disc degeneration (IDD) is a common orthopedic disease that often causes other spinal-related diseases (such as herniation, cauda equine syndrome, lumbar spinal stenosis and degenerative spondylolisthesis) and seriously hinders patient quality of life. The pathophysiology and pathogenesis of IDD are not clearly understood [1].

To study the underlying mechanisms of IDD and its associated systemic biomechanical and biochemical response, various experimental animal models (mini pigs, dogs, goats, monkeys and sheep) have been developed to mimic the pathophysiological changes typically observed in patients with IDD [2-5]. Different methods have been reported for inducing the disease (such as injection and aspiration) [6-8], using different approaches to the disc (invasive, fluoroscopy-guided or computed tomography (CT)-guided) [9-11]. Among these methods, stabbing the disc with a needle using the posterolateral retroperitoneal approach has the advantage to be very appropriate for IDD induction because it reproduces the slow and spontaneous process occurring in most humans. Indeed, focal

Ultrasound guided percutaneous annular puncture

Annular injury has been shown to be an initiator of IDD induced by needle puncture. Since the development of the stab injury model [12-14], it has become one of the most widely used and realistic models for investigating changes in the morphological, mechanical and biochemical properties during IDD, and its mild degeneration is suitable to evaluate biologic therapies.

A possible treatment of IDD would be direct delivery of specific growth factors, adenovirus particles or autologous cells directly into the discs [15-17]. Therefore, determining the safe needle size, number of punctures and technique is an important issue to prevent causing more harms than goods to the discs [18]. In addition, an ultrasound (US)-guided approach could be easier to perform in most clinical settings compared with the open, fluoroscopy-guided and CT-guided approaches that require extensive and expensive equipment and personnel.

Therefore, the aim of the present study was to establish a rabbit model of IDD using a direct minimally invasive procedure, and to establish a safe approach for disc injection of drugs. Results of the present study could be used to design new approaches to deliver therapeutic agents to intervertebral discs without further damaging them.

Materials and methods

Rabbits and study design

The Animal Care and Use Committee of the Second Military Medical University approved all animal experimental protocols, which followed the principles of laboratory animal care (NIH publication No. 85-23, revised 1985) and the current version of the Chinese Law on the Protection of Animals. Eighteen New Zealand white rabbits (Experimental animal center of Second Military Medical University, Shanghai, China) weighing 2.5-3.0 kg underwent percutaneous annular puncture under US guidance. The rabbits were then followed up by X-rays and magnetic resonance imaging (MRI) at 4, 8, and 12 weeks after surgery. At each time point, six rabbits were chosen randomly, anesthetized with pentobarbital sodium (0.15 mL/kg intravenously) and then killed with an intravenous delivery of 5 mL of 3% sodium pentobarbital. The intervertebral disc was harvested using a posterolateral retroperitoneal approach for histological analysis. All motion segments, including L2-3, L3-L4, L4-L5, and L5-L6 were...
Ultrasound guided percutaneous annular puncture procedures

US-guided annular puncture procedures

US-guided annular percutaneous needle puncture was used to establish this model and to assess the efficacy and relative safety of an intradiscal delivery method. First, US was conducted through the retroperitoneal approach to identify the iliac spine and the location of intervertebral discs (Figure 1A). Then, target disc was confirmed from the caudal to cephalic spine according to the position of the iliac spine. Once the target disc center was confirmed, punctures with the 18G and 27G needles were then subcutaneously performed separately under US guidance into the disc center (Figure 1B). An 18G or 27G needle were penetrated toward the center of the disc under US guidance, and the needle pinpoint was then confirmed to be positioned in the disc center at a depth of 5 mm [19]. L5-L6 segments were injured with the 18G needle to induce IDD. The 27G needle was tested at the L4-L5 position. L2-L3 segments were used as controls. The L3-L4 segment underwent a sham procedure (the needle did puncture the skin, but not the disc). The puncture procedure was controlled manually and paused when the needle pinpoint touched the rim of the disc. The pinpoint of the needle was stabbed into the nucleus pulposus for about 5 mm (Figure 1C). After puncture, an X-ray and CT scan were conducted to confirm the puncture position of the needle (Figure 1D-F). Also small amount of nucleus pulposus in the canal of the needle was carefully examined to ensure that he needle had correctly stabbed into the nucleus pulposus. The puncture was performed in triplicate.

MRI

All lumbar spinal segments were assessed using conventional MRI at 4, 8 and 12 weeks. MRI was acquired using a transmit-receive quadrature knee coil (MAGNETOM Avanton, SIEMENS, Germany). T2WI images in the sagittal plane were obtained. The disc morphologic changes were divided into five categories according to the methods of Pfirrmann et al. [20].

X-ray

Lateral X-rays were obtained from each lumbar spine at 4, 8 and 12 weeks postoperatively. The disc height (DH) was measured from the lateral X-rays. The average disc thickness was calculated by averaging the distance between the endplates at the anterior, middle and posterior portions of the disc. The preoperative X-ray was used for as baseline. The change in DH was expressed as %DH = postoperative DH/preoperative DH*100% [21].

Histology and immunohistochemistry

One half of the harvested lumbar discs (including the endplates) were sampled and fixed in 10% neutral-buffered formalin.

Figure 2. Representative changes in X-rays at 4, 8, and 12 weeks postoperatively. A. Mild endplate calcifications and disc space narrowing in 18G segments at 4 weeks. B. Prominent disc space narrowing and midrate endplate calcifications were present at 8 weeks postoperatively. C. Prominent wedging, endplate calcifications and subchondral sclerosis were seen (arrow), with osteophyte being present on disc margin with disc space narrowing.
Ultrasound guided percutaneous annular puncture

10% neutral-buffered formalin overnight. The discs were decalcified using ethylenediaminetetraacetic acid. Decalcified discs were serially dehydrated in ethanol and embedded in paraffin. The blocks were cut into 4-µm-thick sections. Hematoxylin-eosin staining was then conducted.

For immunohistochemistry, rabbit polyclonal collagen I and II antibodies (1:100 dilution; Boster, Wuhan, China) were used to evaluate the changes in collagen in the discs using a standard immunoperoxidase method with 3,3-diaminobenzidine tetrachloride dehydrate.

Statistical analysis

Continuous data are presented as means ± standard deviations (SD). One-way analysis of variance with the least squares difference post hoc test was used to assess the differences. SPSS 16.0 (IBM, Armonk, NY, USA) was used for analysis. P-values P<0.05 were considered significant.

Results

X-ray and MRI

A slight intervertebral disc space narrowing was first observed in the 18G segments at 4 weeks after surgery (75.50% of the preoperative DH, P<0.05 vs. preoperative, but 95.83%, 93.83% and 91.50% of the control, sham and 27G segments, respectively, all three P<0.05 vs. 18G) (Figures 2A and 3). The reduction in DH at 8 weeks after surgery was more apparent in the 18G segments (56.17% of the preoperative DH, P<0.05 vs. preoperative, and 93.50%,
87.12% and 83.17% in the control, sham and 27G segments, respectively, all three P<0.05 vs. 18G (Figures 2B and 3). At 12 weeks, DH had decreased further in the 18G segments.
Ultrasound guided percutaneous annular puncture

(39.83% of the preoperative DH, P<0.05 vs. preoperative, and 92.21%, 83.12% and 76.33% in the control, sham and 27G segments, respectively, all three P<0.05 vs. 18G) (Figures 2C and 3). In addition, at 12 weeks, the 18G segments displayed significant anterior and posterior osteophytes and endplate sclerosis (Figure 2C). On the other hand, the control, sham and 27G segments did not show these lesions during the 12-week period. In the control, sham and 27G segments, no significant difference was seen in DH (Figure 3).

MRI showed that the signal intensity of the nucleus pulposus decreased progressively in the 18G segments during the 12-week postoperative period (Figure 4A-C). The 18G segments showed lower signal intensity than the control, sham and 27G segments at each time point (Figure 4), with the lowest signal intensity being observed at 12-wk postoperatively (Figure 4). No significant difference was observed in disc condition by MRI between the control, sham and 27G segments at any time point, suggesting the safety of the use of 27G puncture. Using the MRI classification of IDD, grade II degenerative changes were observed in the 18G segments at 4 weeks, while grade III or IV were observed at 8 weeks, and grade IV or V at 12 weeks. The 27G segments showed a slight decrease in the T2WI signal at 12 weeks with grade II degeneration on T2WI. In contrast, the control and sham segments remained relatively constant during the 12-week period, with grade I on T2WI.

Gross morphological and histological analyses

Compared with the control segments at the different time points, the loss of the gel-like nature of the nucleus and brown pigmentation were clearly seen in the 18G segments (Figure 5B).
In addition, considerable delamination of the annular layers was present, particularly around the puncture part of the annulus, with no distinct demarcation between the annulus-nucleus borders. These changes were observed in the 18G segments over the entire 12-week period. Ossification and anterior osteophytes formation in the 18G segments were detected at 12 weeks.

Hematoxylin-eosin staining revealed that the normal disc was composed of an outer fibrous annulus fibrous with obvious concentric fibrous lamellae and an inner nucleus pulposus with an amorphous matrix and heterogeneous cells (Figure 5C and 5E). The nucleus pulposus of the 18G segments was characterized by an increase in fibrous tissue and a decrease in volume that included shrinkage or disappearance. More nucleus pulposus cells with an elliptical shape were distributed unevenly owing to ingrowth of proteoglycan matrix into multiple cell islands (Figure 5F). The lamellar architecture of the inner, middle, and outer annulus became more disorganized with increasing time after 18G puncture (Figure 5D).

Immunohistochemistry

Immunohistochemistry showed that the expression of collagen II was decreased in discs with IDD. In the degenerative nucleus pulposus, a decrease in staining for collagen II was observed (Figure 6D), and staining for collagen I was detected in the extracellular matrix (Figure 6B). Immunohistochemistry revealed a clear tendency for a more pronounced decrease in the expression of collagen II and an increase in collagen I in the degenerated nucleus pulposus over time.

Discussion

The aim of the present study was to establish a rabbit model of ISS using a direct, minimally invasive procedure, and to establish a safe approach for disc injection of drugs. Results showed that DH was reduced as early as 4 weeks and osteophytes were formed at 12 weeks after puncture in the 18G segments, but no such changes occurred in the 27G segments. MRI demonstrated a progressive loss of T2WI signal intensity throughout the 12-week period. Immunohistochemistry showed a progressive loss of the normal architecture in the 18G segments from 4 to 12 weeks, while the 27G segments showed only a slight change in architecture.

The induced disc disorder model is characterized by progressive degeneration, a loss of disc height (DH) and altered biomechanical strength [22]. In the stab injury model, there is a herniation of the nucleus pulposus from the intervertebral disc after needle puncture of the disc annulus, which leads to the loss of the loading pressure that is balanced with the suction pressure in the normal healthy disc. At the onset of a disc disorder, the imbalance between the hydrostatic and osmotic pressures triggers fluid exudation and volume reduction. Subsequently, the disc undergoes a process of remodeling that culminates in IDD. When the stab injury model was created in rodents, it was shown that the morphologic changes in the disc and vertebral body were similar to those seen in IDD in humans [18]. Despite its clinical relevance and widespread use in the field of intervertebral disc research, the major concern with the stab injury model is the perturbations of the physiologic function around the disc. Therefore, in the present study, we designed a new method of creating an IDD model in the rabbit using an US-guided needle puncture and we have demonstrated that using a 27G needle does not induce degenerative changes in DH. Therefore, this could be a suitable method for delivering therapeutic agents into the discs.

The stab injury leads to changes in compression in the annulus and results in a decrease in DH. The endplate is vulnerable to fatigue damage, even with normal physiologic load levels [23], and the nutrient transportation can be affected directly by capillaries of cartilage endplate with fluid movement in and out of the disc [24]. Therefore, disc degeneration can be initiated from the vertebral endplate by mechanical disruption. Discs with Schmorl nodes are defects of the vertebral endplate and are considered to represent the advanced degenerative changes at an earlier age [25]. Disc injuries and endplate sclerosis can block nutrient supplement, and the decreased nutrient supplement inhibits matrix synthesis [26]. In the present study, evidence from the X-rays demon-
Ultrasound guided percutaneous annular puncture

...dicated that the DH decreased as the endplate sclerosis occurred. The sclerotization of the stabbed disc endplate was detected at 8 weeks and was obvious at 12 weeks. The stab injury model induces considerable changes to the nucleus, particularly in the biomechanical properties of degenerative discs [27-29]. In the present study, the changes observed after stabbing were consistent with those occurring in human IDD. Radiographically, human IDD is characterized by a reduction in DH [30] and the formation of prominent and, in some cases, bridging osteophytes [31].

A previous investigation have revealed that MRI could be reliable for examination of gross disc morphology [32]. It was reported that the concordance of the classification system with the morphologic and MRI changes was high. Modic et al. [33] reported that the signal loss of the disc on T2WI MRI correlated with the progressive degenerative changes in the intervertebral disc. The relationship between the disc signal intensity on MRI and biochemical changes has also been studied. Indeed, Pearce et al. [34] have shown that the brightness of the nucleus (i.e., the response of the high-signal intensity on T2WI MRI) correlated directly with the proteoglycan concentration but not with the water or collagen content. In the present study, MRI has been used to assess disc degeneration in vivo. The signal intensity of the 18G segments was lower than that of the control, sham and 27G segments, and decreased consecutively from 4 to 12 weeks on T2WI MRI.

Proteoglycans and water are the major components of the normal nucleus. Decreases in their concentrations are considered to be the principal biochemical markers of aging and IDD in humans [35]. Many studies have suggested that IDD is associated with decreased hydration, especially in the nucleus pulposus [36-38]. With IDD, reductions in proteoglycan content and water are most commonly observed in the nucleus, similar to the observations from animal models. Another factor that influences the concentration of proteoglycan is the hydrostatic pressure, which directly affects matrix expression and extracellular matrix synthesis in the intervertebral disc [39]. Reductions in proteoglycan and water content result in a consecutive decline in hydrostatic pressure inside the degenerated disc, and abnormal static pressure greater or lower than physiologic levels can act catabolically, inhibiting proteoglycan synthesis. In the present study, we punctured the disc and extracted part of the nucleus pulposus. In addition to their water-binding function, small proteoglycans have the ability to bind to collagens, growth factors, and other matrix components [40]. In the present study, it has been shown that collagen II expression in the 18G segments was reduced compared with that in the control and sham segments and decreased consecutively with time. Biochemically, human IDD is characterized by decreased expression of large proteoglycans, such as aggrecan shifts in the collagen expression and changes in collagen cross-linking indicative of increased matrix turnover [41, 42].

The minimally invasive stab model has several advantages for disc degeneration studies at the molecular and animal levels. First, the present model is based on an action that depletes the interference of the paravertebral muscles and ligaments to the disc, rather than the damage effect of the paravertebral muscles and ligaments on the disc, with questionable physiologic relevance to IDD [43]. This is a major advantage compared with scalpel incision into the anterior annulus to initiate a degenerative process. In the present study, an US-guided approach was successful in establishing all models. Indeed, an US-guided approach could be easier to perform in most clinical settings compared with the open, fluoroscopy-guided and CT-guided approaches that require extensive and expensive equipment. This approach would be easy to implement in the clinic when injecting therapeutic agents into a disc [6, 44-46]. Of course, the results of the present study were obtained using an animal model, and further studies are necessary before using this approach in humans.

In conclusion, using ultrasound-guided percutaneous annular puncture in rabbits, a 27G was small enough prevent the induction of IDD and could be a promising method of delivering therapeutic agents into discs. This approach could be used for studying therapeutic agent delivery to the discs without aggravating the discs’ condition.

Acknowledgements

This work was supported by the the National Natural Science Foundation of China (Grant No.
Ultrasound guided percutaneous annular puncture

81550006), and the The new hundred talents program of Shanghai municipal commission of Health and Family Planning (Grant No. XBR2013099).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Hongxing Shen, Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai 200433, People’s Republic of China. Tel: +86-13524583474; Fax: +86-21-31161584; E-mail: shenhxsci@sina.com

References

Ultrasound guided percutaneous annular puncture

[42] Kang JD, Stefanovic-Racic M, McIntyre LA, Georgescu HI and Evans CH. Toward a biochemical understanding of human intervertebral disc degeneration and herniation. Contributions of nitric oxide, interleukins, prosta-
Ultrasound guided percutaneous annular puncture

[43] Yurube T, Takada T, Suzuki T, Kakutani K, Mae-no K, Doita M, Kurosaka M and Nishida K. Rat tail static compression model mimics extracel-
ular matrix metabolic imbalances of matrix metalloproteinases, aggrecanases, and tissue inhibitors of metalloproteinases in interverte-

[45] Kwon YJ. A minimally invasive rabbit model of progressive and reproducible disc degenera-