Original Article

Assessment of liver fibrosis: comparison of the liver fibrosis index by real-time ultrasound elastography and the apparent diffusion coefficient by magnetic resonance imaging in a rat model

Genwen Hu1*, Xing Zhong2*, Xuhui Zhang3, Wen Liang4, Yufa Li4, Queenie Chan5, Xianyue Quan3

1Department of Medical Image Center, Shenzhen Bao’an Maternal and Child Health Hospital, Shenzhen, Guangdong Province, China; 2Department of Medical Image Center, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China; 3Department of Medical Image Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; 4Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; 5Philips Healthcare, Hong Kong, China.

*Equal contributors.

Received October 19, 2015; Accepted January 10, 2016; Epub February 15, 2016; Published February 29, 2016

Abstract: Background: non-invasive method, apparent diffusion coefficient (ADC) and the liver fibrosis index (LFI), assessment of liver fibrosis has been one of major objectives in the society of hepatologists. Aim: To explore the variable characteristics of ADC and the LFI in different stages of liver fibrosis in rats and to compare their performance in staging liver fibrosis. Methods: Liver fibrosis model rats (N = 50) were produced by carbon tetrachloride (CCL4). Surviving model rats (N = 45) and controls (N =15) were subjected to MRI and RTE, and the ADC and LFI values were analyzed. All animals were sacrificed for pathological examination. The liver fibrosis stage (F0-F4) was defined based on the METAVIR score. Nonparametric statistical methods and receiver operating characteristic (ROC) curve analyses were employed to determine diagnostic accuracy. Results: Correlation analysis showed that the liver fibrosis stage was negatively correlated with ADC (r = -0.732, P < 0.001) and positively correlated with LFI (r = 0.706, P < 0.001). ROC curves showed that the areas under the curve (AUCs) for ADC and LFI in the prediction of the liver fibrosis stage were 0.781-0.924 and 0.824-0.939, respectively. Conclusions: Both the ADC values and LFI values were strongly correlated with the liver fibrosis stages in our rat model. Moreover, the ADC was sensitive in predicting early-stage liver fibrosis, while the LFI was more accurate in predicting predict intermediate- and late-stage liver fibrosis.

Keywords: Liver fibrosis, magnetic resonance imaging, apparent diffusion coefficient, ultrasound, real-time elastography

Introduction

Liver fibrosis can be induced by chronic viral infections, excessive consumption of alcohol, abnormal metabolism, autoimmune response, and drugs [1, 2]. The consensus is that early-stage liver cirrhosis is reversible [3]. Thus, the early diagnosis of liver fibrosis with a desirable sensitivity and specificity is required for managing these patients.

The traditional imaging-based examinations of liver fibrosis have limited utility [4]. Real-time elastography (RTE) using ultrasound and diffusion-weighted magnetic resonance imaging (DWI) are noninvasive examinations. RTE and DWI have been studied extensively to determine their diagnostic value, often individually. However, few reports have compared both methods in the one and the same study.

DWI can detect the random Brownian motion of water molecules inside human tissues. Measurement of the extent of restriction and the direction of water molecule diffusion can thereby indirectly reflect changes in tissue microstructure. Therefore, DWI is useful in diagnosis of liver fibrosis [5-7]. The apparent diffusion coefficient (ADC) is used to quantify the diffusion coefficient. As reported, the ADC in a
fibrotic liver is lower than the normal level [5-10].

The common B-mode ultrasound is not able to for early detection of liver fibrosis. However, the new technique of RTE has been employed to detect fibrosis in the liver. Differences in the elastic coefficient among tissues can be differentiated by RTE. When the motion amplitude is transformed into real-time color images, the colors of the images reflect the hardness of the tissues. Red usually indicates a soft tissue, while blue indicates a hard one [11, 12]. The cardiovascular beating capacity of the patient is utilized to form a tissue compression image. The liver fibrosis index (LFI), a quantitative parameter, represents the relative severity of fibrosis [13]. The new RTE improves the sensitivity of elastographic signal collection and reduces interference of human factors induced upon measurement.

The purpose of this study was to explore the variable characteristics of ADC and the LFI in different stages of liver fibrosis in rats, and to compare their performance in staging liver fibrosis.

Materials and methods

Experimental animals

Male Sprague-Dawley rats (n = 65, weighing 200 ± 20 g) were provided by the Experimental Animals Center at Southern Medical University (Certificate No. 44002100001642). The rats were housed in cages in an SPF-level environment: 18-20°C, humidity 60-70%; 12-h light and dark cycles. Drinking and eating were not restricted for the rats during the experiment. All experimental animals drank distilled water and were fed with standard rat chow. Animals were regularly monitored, and their general wellbeing was recorded periodically. All experimental procedures were approved by the Institutional Animal Ethics Committee of University.

Modeling method

The 65 rats were randomly divided via a digital meter into the model group (n = 50) or the control group (n = 15). A classical procedure for chemical-induced liver fibrosis was utilized [14, 15]. Briefly, all rats in control group were given magnetic resonance imaging (MRI) examina-
Image analysis

The value of ADC was calculated for different b values assuming a mono-exponential decay. Images were analyzed using a PRIDE DWI Tool software (version 1.5, Philips Healthcare). Slices of liver parenchyma were screened for selection of the best one. For each sample, 5 regions of interest (ROIs) of approximately 3-4 mm² were manually drawn by an experienced radiologist, avoiding the inclusion of bile ducts, vessels or the liver margin. Fits were performed for all ROIs on a pixel-by-pixel basis with the Levenberg-Marquardt algorithm. Subsequent analysis was carried out using Image J software (NIH, Bethesda, MD, USA). The mean values of

Figure 1. MRI of a rat with stage F2 fibrosis. A. White circles demonstrate regions of interest manually placed on the liver parenchyma with the DWI. B. Axial T2-weighted image. C. Axial T1-weighted image.

Figure 2. RTE images of a rat with stage F2 fibrosis. A. B-model ultrasonic image of the anterior lobe of a rat. B. Elastography depends on the heart beating. C. The LFI was computed from the multiple logistic regression models of the nine parameters.
ADC and LFI in various stages of liver fibrosis

Ultrasonic examination

Ultrasonic imaging (Hitachi HI Vision Preirus ultrasound meter, Hitachi Medical, Tokyo, Japan) was immediately performed after MRI scanning. A linear array probe at a frequency 5-13 MHz (central frequency of 8 MHz) was used. The rats were fixed in the dorsal position and underwent liver examination. Double amplitudes were simultaneously displayed as an elastic image on the left side and a 2D image on the right side. The elastography depends on the heart beating. Along with the heart contraction and diastole, the lower left part of the motion meter’s screen displays the liver compression curves (stress strain curve), which represent the compression tensile modulus and the impact frequency produced by the liver tissues under heart beating. If the stress strain curve shows five or more continuous stable waveforms, the image is frozen. Next, the built-in data processing system was transferred to measure the LFI within a ROI. Each rat was examined 10 times, and the mean value was computed.

The ROI was set at the anterior lobe, but attention was paid to avoid blood vessels, bile ducts, and liver margins. The strain value in the ROI was represented by colors from 0 (red) to 255 (blue), indicating a hardness range from absent to complete. In addition, histograms and nine parameters were generated, including the mean of the relative strain value (MEAN), ratio of the blue area in the analyzed region (% AREA), standard deviation of the relative strain value (SD), complexity of the blue area (COMP), skewness of the strain histogram (SKEW), kurtosis of the strain histogram (KURT), inverse difference moment (IDM), entropy (ENT), and angular second moment (ASM).

LFI was computed from the multiple logistic regression models of the above nine parameters [13, 16] as follows: \(LFI = (-0.00897 \times MEAN) - (0.00502 \times SD) + (0.00232 \times % AREA) + (0.0253 \times COMP) + (0.775 \times SKEW) - (0.281 \times KURT) + (2.08 \times ENT) + (3.04 \times IDM) + (40.0 \times ASM) - 5.54 \) (Figure 2).

Histopathology

All rats were sacrificed by intraperitoneal injection of an overdose of 3% pentobarbital at various time points after MRI scanning and ultrasonic detection (5-15 h). Livers were fixed in 10% formalin. The sections were stained with

Table 1. Liver fibrosis index (LFI) and apparent diffusion coefficient (ADC) at different stages of liver fibrosis presented as mean values ± standard deviation (SD) and 95% confidence intervals (CIs); differences between stages were highly significant (P < 0.001)

<table>
<thead>
<tr>
<th>Fibrosis stage</th>
<th>n (60)</th>
<th>LFI (Mean ± SD) CI</th>
<th>ADC (× 10⁻³ mm²/s) Mean ± SD CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15</td>
<td>1.22 ± 0.43 0.97-1.45</td>
<td>1.29 ± 0.18 1.19-1.44</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>1.53 ± 0.29 1.33-1.72</td>
<td>1.11 ± 0.16 1.00-1.22</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>1.61 ± 0.28 1.44-1.79</td>
<td>0.93 ± 0.15 0.84-1.03</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>1.95 ± 0.56 1.55-2.35</td>
<td>0.88 ± 0.12 0.79-0.97</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>2.53 ± 0.61 2.26-2.78</td>
<td>0.87 ± 0.10 0.82-0.93</td>
</tr>
<tr>
<td>P value</td>
<td></td>
<td>< 0.001</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>
ADC and LFI in various stages of liver fibrosis

Hematoxylin & eosin and Masson’s for histology, and photographed with Leica DM2000.

Liver fibrosis stages were scored by author LYF (an experienced histopathologist with 9 years of liver pathology experience) using the METAVIR classification system [17], with the following stage definitions: F0 = no fibrosis; F1 = portal fibrosis without septa; F2 = portal fibrosis and a few septa; F3 = numerous septa without cirrhosis; and F4 = cirrhosis.

Statistical analysis

Statistical analysis was performed by one-way analysis of variance (ANOVA) for multiple group comparisons of the parameters using SPSS 20.0. Spearman’s rank correlation coefficients, r values, were calculated to assess the correlation. Receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were used to evaluate the usefulness of parameters for predicting the fibrosis stage. A P-value ≤ 0.05 was considered statistically significant.

Results

Pathological results

Five rats in the model group died during the process of intervention, and the remaining 45 rats were pathologically scored for liver fibrosis: F1 = 11, F2 = 12, F3 = 10, and F4 = 12. All rats in the control group completed the experimental analysis (F0 = 15) (Figure 3).

ADC and LFI scores in different stages of liver fibrosis

Our results showed that the ADC declined while the LFI increased along with the progression of fibrosis (Table 1; Figures 4 and 5). Both the ADC and LFI in all groups were analyzed by ANOVA. Both indices were significantly different among the five groups (P < 0.001).

Correlation analysis showed that the ADC was negatively correlated with the liver fibrosis stage ($r = -0.732$, P < 0.001, CI: -0.826--0.582), but the LFI was positively correlated with the progression of fibrosis ($r = 0.706$, P < 0.001, CI: 0.525-0.831).

ROC curve analysis

ROC curve analysis showed that ADC and LFI predicted the liver fibrosis stage with high sensitivity and specificity. At the early stages (F0 vs. F1-F4, F0-F1 vs. F2-F4), the area under curve (AUC) of ADC was larger than that of LFI, but at intermediate and late stages (F0-F2 vs.
ADC and LFI in various stages of liver fibrosis

Figure 5. RTE maps for rat livers with different fibrosis stages. The mean LFI values increase with fibrosis stage progression: (A) Stage F0, LFI = 1.22; (B) Stage F1, LFI = 1.53; (C) Stage F2, LFI = 1.61; (D) Stage F3, LFI = 1.95; and (E) Stage F4, LFI = 2.53.
ADC and LFI in various stages of liver fibrosis

In conclusion, Current clinical diagnostic methods for detecting liver fibrosis include liver biopsy, serology, and imaging. Liver biopsy-based histology presents direct evidence of liver fibrosis. However, the procedure is invasive and sampling errors [18, 19]. Furthermore, biopsies are difficult to obtain for dynamic observation [20]. Serology also has serious limitations in terms of sensitivity and specificity [21, 22]. Meanwhile, traditional imaging methods have a low specificity. RTE by ultrasound and DWI are noninvasive methods that have advantages over traditional methods. However, RTE and DWI are different in imaging mechanisms with pathophysiology.

To investigate the diagnostic value of the ADC and LFI at differentiating liver fibrosis stages, in this study, we measured both the ADC by MRI and the LFI by ultrasound in rats with experimentally induced fibrosis that was histologically graded. We found that both the ADC and LFI were strongly correlated with the progression of liver fibrosis. ROC curve analysis showed that both the ADC and LFI were highly sensitive and specific at predicting the liver fibrosis stage.

A declining ADC value during the formation of liver fibrosis and cirrhosis has been well recognized [6, 23]. Most scholars agree that the decreased ADC values primarily arise from the changing properties of a fibrotic liver, which include diffused hyperplasia of abundant fibrous tissues in the extracellular space, degenerative edema in hepatocytes, and inflammation in both the portal region and parenchyma. All of these changes increase resistance to the dispersion of water molecules [5-7]. In addition, the reduction of ADC may be attributed to the alteration of liver microcirculation [8-10]. Changes in intrahepatic fats and iron contents also can impact the ADC [24].

The fibrosis stage was inversely correlated with the ADC ($r = -0.732$, $P < 0.001$). This correlation

Table 2. Performance of the selected apparent diffusion coefficient (ADC) and liver fibrosis index (LFI) cut-off values in predicting METAVIR fibrosis stages

<table>
<thead>
<tr>
<th>Parameter, comparison</th>
<th>Cut-off value</th>
<th>Sensitivity</th>
<th>95% CI</th>
<th>Specificity</th>
<th>95% CI</th>
<th>+LR</th>
<th>-LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>F0 vs. F1-4</td>
<td>≤ 1.10</td>
<td>80.00</td>
<td>65.4-90.4</td>
<td>86.67</td>
<td>6.00</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>F0-1 vs. F2-4</td>
<td>≤ 1.04</td>
<td>88.24</td>
<td>72.5-96.7</td>
<td>88.46</td>
<td>7.65</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>F0-2 vs. F3-4</td>
<td>≤ 1.01</td>
<td>95.45</td>
<td>77.2-99.9</td>
<td>73.68</td>
<td>3.63</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>F0-3 vs. F4</td>
<td>≤ 0.98</td>
<td>83.33</td>
<td>51.6-97.9</td>
<td>62.50</td>
<td>2.22</td>
<td>0.27</td>
</tr>
<tr>
<td>LFI</td>
<td>F0 vs. F1-4</td>
<td>> 1.37</td>
<td>82.22</td>
<td>67.9-92.0</td>
<td>73.33</td>
<td>44.9-92.2</td>
<td>3.08</td>
</tr>
<tr>
<td></td>
<td>F0-1 vs. F2-4</td>
<td>> 1.64</td>
<td>70.59</td>
<td>52.5-84.9</td>
<td>80.77</td>
<td>60.6-93.4</td>
<td>3.67</td>
</tr>
<tr>
<td></td>
<td>F0-2 vs. F3-4</td>
<td>> 1.82</td>
<td>77.27</td>
<td>54.6-92.2</td>
<td>86.84</td>
<td>71.9-95.6</td>
<td>5.87</td>
</tr>
<tr>
<td></td>
<td>F0-3 vs. F4</td>
<td>> 1.98</td>
<td>91.67</td>
<td>61.5-99.8</td>
<td>85.42</td>
<td>72.2-93.9</td>
<td>6.29</td>
</tr>
</tbody>
</table>

F3-F4, F0-F3 vs. F4), the AUC of LFI was larger than that of ADC (Figure 6). The sensitivity and specificity under the optimal cutoff of each pathological stage that were predicted using Youden’s index are listed in Table 2.

Discussion

In conclusion, Current clinical diagnostic methods for detecting liver fibrosis include liver biopsy, serology, and imaging. Liver biopsy-based histology presents direct evidence of liver fibrosis. However, the procedure is invasive and sampling errors [18, 19]. Furthermore, biopsies are difficult to obtain for dynamic observation [20]. Serology also has serious limitations in terms of sensitivity and specificity [21, 22]. Meanwhile, traditional imaging methods have a low specificity. RTE by ultrasound and DWI are noninvasive methods that have advantages over traditional methods. However, RTE and DWI are different in imaging mechanisms with pathophysiology.

Figure 6. ROC curves of ADC and LFI for differentiation of fibrosis stages. A. F0 vs. F1-F4, area under ROC curve (AUC): ADC = 0.917, LFI = 0.840. B. F0–F1 vs. F2–F4, AUC: ADC = 0.924, LFI = 0.824. C. F0-F2 vs. F3-F4, AUC: ADC = 0.842, LFI = 0.867. D. F0-F3 vs. F4, AUC: ADC = 0.781, LFI = 0.939.
ADC and LFI in various stages of liver fibrosis

is higher than those reported previously between ADC values and fibrosis stage, which are $r = -0.654$, $P = 0.001$ [25]; $r = -0.54$, $P < 0.0001$ [26], and $r = -0.41$ [27].

The value of ADC in assessment of liver fibrosis staging is still a subject of scientific debate. Some researchers found that the ADC does not accurately determine the stage [6, 24, 28]. Others have suggested that the ADC does accurately evaluate the degree of liver fibrosis [26, 29, 30]. In this study, the ADC revealed a good predictive value for diagnosing the stage of liver fibrosis (AUC: 0.781-0.924), which is consistent with results of Fujimoto et al. [30] (AUC: 0.842-0.926) and Bonekamp et al. [26] (AUC: 0.77-0.79).

We also noted that the AUC of ADC staging early-stage was larger than that at late stage. Liver cell swelling and fat solubilization were alleviated at stages F3-F4. On the other hand, the deposition of EMC was gradually intensified. Thus, the uncertain ADC values in fibrosis stage F2 to stage F4 [31].

RTE is a novel ultrasonic technique for detecting liver fibrosis. The diffuse hyperplasia of abundant fibrous tissues in the extracellular space increases the liver hardness during the fibrotic process. The changing composition of the hepatic parenchyma can be displayed by RTE. The basic principle of elastography is that changes in echo signal migration amplitudes before and after compression are transformed into real-time color images as follows: an echo in the tissues with a small elastic coefficient will move longer after compression and is displayed as red; an echo that travels a shorter distance in tissues with a large elastic coefficient is displayed as blue; and an echo that travels an intermediate distance in tissues with a medium elastic coefficient is displayed as green. Thus, the tissue hardness is reflected by different colors. The LFI, computed from multiple logistic regression models, suggests the extent of fibrosis in a quantitative manner.

Despite the article points out that the LFI is evaluation of HCV usually [32], but studies showed that LFI useful in liver fibrosis caused by variety of reasons [33-35].

Many studies have used RTE to determine the liver fibrosis stage. High accuracies with AUC values of 0.66-0.93, 0.87-0.88, 0.87-0.91, and 0.91-0.94 have been reported [36-39] in the staging of liver fibrosis through ROC curve analyses.

In this study, the LFI showed a high accuracy (AUC: 0.824-0.939) in the prediction of liver fibrosis. The LFI was positively correlated with the degree of liver fibrosis ($r = 0.706$), which signaled that liver tissue was gradually hardened along with the repair process, demonstrating a fundamental change in the fibrotic liver.

At early stages of fibrosis (F0 vs. F1-F4, F0-F1 vs. F2-F4), the AUC of the ADC was larger; thus, because the sedimentation of collagen fibers was not the main pathological change at the early stages. So the hardness of liver parenchyma is not obvious. However, once the fibrosis was at an intermediate or late stage, the AUC of LFI was larger than that of ADC. The deposition of collagen fibers accumulated, resulting in significantly increased liver hardness and an increased LFI value.

Limitations of our study: This study was based on a rat fibrosis model, and the findings may not be fully applicable to human liver fibrosis. However, the diagnostic utility of staging fibrosis by both the ADC and LFI seems promising and is worthy of further investigation in the clinic.

In conclusion, In spite of different imaging mechanisms by RTE and DWI, both the ADC as determined by MRI and the LFI as determined by RTE were strongly correlated with liver fibrosis progression. Moreover, the ADC was more sensitive in predicting early-stage liver fibrosis, while the LFI was more accurate predicting intermediate- and late-stage liver fibrosis. Our results suggest that both RTE and DWI should be utilized in staging fibrosis and a combination of two measurements will increase the staging accuracy.

Acknowledgements

This study was supported by grant from the Guangdong Province Natural Science Foundation (grant no. 2015A030313269). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. And the work was not funded by any industry sponsors.
Disclosure of conflict of interest

None.

Address correspondence to: Xianyue Quan, Department of Medical Image Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China. Tel: 020-61643460; Fax: 020-61643460; E-mail: quanxianyue2014@163.com

References

ADC and LFI in various stages of liver fibrosis

