Clinical efficacy comparison of rosuvastatin with atorvastatin in high-risk Chinese dyslipidemic patients

Guoyu Wang1, Fengzhi Wang2, Yubo Wu1, Jingru Cui1, Kun Zhang1

1Department of Pharmaceutical, The Forth Affiliated Hospital of Harbin Medical University, Harbin 150001, China; 2Department of Pharmacy, The First Affiliated Hospital of Jiamusi University, Jiamusi 154002, China

Received October 9, 2015; Accepted December 30, 2015; Epub June 15, 2016; Published June 30, 2016

Abstract: Purpose: The study aimed to compare the cholesterol-lowering efficacy of Rosuvastatin with Atorvastatin in high-risk Chinese dyslipidemic patients. Methods: This randomized open-label study enrolled 90 high-risk dyslipidemic patients who were hospitalized in the fourth affiliated hospital of Harbin medical college from December 2013 to July 2014, and diagnosed according to the China Adult Dyslipidemia Prevention Guide criteria (2007 Edition). These patients were randomized into Atorvastatin and Rosuvastatin groups, which were medicated on Atorvastatin 20 mg/day and Rosuvastatin 20 mg/day for 8 weeks, respectively. The effects of Atorvastatin and Rosuvastatin on serum low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), and triglyceride (TG) were evaluated between the two groups. Moreover, the goal attainment rates of LDL-C or TC in the two groups were assessed, respectively. Results: Rosuvastatin achieved a significantly better reduction of LDL-C (45.3% vs. 39.2%, P<0.05) and TC (35.2% vs. 29%, P<0.05) than Atorvastatin. Besides, Rosuvastatin group had a higher percentage of patients achieving the recommended goal of LDL-C and TC in the Atorvastatin group (55.1% vs. 40%, 51.2% vs. 36.2%). Conclusion: Rosuvastatin had stronger lipid-reducing efficacy than Atorvastatin in high-risk hyperlipidemic patients in China.

Keywords: Rosuvastatin, atorvastatin, dyslipidemia, high-density lipoprotein, triglyceride

Introduction

Coronary heart disease (CHD) is regarded as number 1 killer of human being around the world [1]. Only in 2010, it causes over 7 million deaths globally [2]. It has been documented that CHD is associated with a number of risk factors, such as smoking, obesity and hyperlipidemia [3].

A rich body of evidence has demonstrated that the therapy to reduce cholesterol is beneficial for individuals at high risk of CHD [4, 5]. Statins are a class of cholesterol-lowering drugs which could inhibit the HMG-CoA reductase and then impede cholesterol synthesis and treat CHD in early stages [6]. To date, a number of statins have been launched on the market and applied in clinic, such as Atorvastatin, Rosuvastatin and Simvastatin. Rosuvastatin possesses a special sulfur structure and has less adverse effects compared with other statins. It has been reported that rosuvastatin could reduce the incidence of cardiovascular events [7].

A number of clinical trials have proved higher cholesterol-lowering efficacy of Rosuvastatin in comparison with other rivals of the statin class. It has been reported that across dose ranges (10-80 mg/day), administration of rosuvastatin exhibits significantly better effect to reduce total cholesterol than atorvastatin, pravastatin and simvastatin in American patients with hypercholesterolemia [8]. A clinical trial in North America shows that Rosuvastatin (10 mg) is more effective to attain European Atherosclerosis Society LDL cholesterol goals in hypercholesterolemic patients in comparison with Atorvastatin (10 mg) [9]. Another prospective multi-center trial in Japan has found that pitavastatin (mg/day), rosuvastatin (2.5 mg/day) oratorvastatin (10 mg/day) appear to exert similar effect to lower LDL-C and have little difference in adverse drug reactions [10]. Similarly, the superiority of rosuvastatin over atorvastatin...
Comparison of rosuvastatin with atorvastatin in Chinese dyslipidemic patients

(10 mg/day) has also been approved in patients at high risk of primary hypercholesterolemia and CHD by a clinical trial conducted in Finland, Iceland, and Ireland [11]. Nonetheless, efficacy comparison between Rosuvastatin and other comparators in Chinese patients with high-risk dyslipidemia has not been fully elucidated. Considering the effect of individual variation on response to drugs, it is very necessary to conduct the comparison in Chinese patients with high-risk dyslipidemia. To address this issue, the study specifically targeted Chinese patients with high-risk dyslipidemia and compared Rosuvastatin and Atorvastatin for lipid-modifying effect on serum lipids including LDL-C, high-density lipoprotein cholesterol (HDL-C), TC, and triglyceride (TG). Besides, the percentages of patients attaining the Adult Treatment Panel (ATP) III of the National Cholesterol Education Program (NCEP) targets [12] for LDL-C or TC after 8 weeks of Rosuvastatin or Atorvastatin treatment were also evaluated, respectively. This study would lay a base for establishment of guidelines on efficacy and safety of Rosuvastatin and Atorvastatin.

Materials and methods

Patients

The prospective study enrolled 90 patients with high-risk dyslipidemia who admitted in the fourth affiliated hospital of Harbin medical college from December 2013 to July 2014. According to the China Adult Dyslipidemia Prevention Guide criteria (2007 Edition), these patients who met the following criteria were defined to be with high-risk dyslipidemia: TC, 5.18-6.19 mmol/L; LDL-C, 3.37-4.12 mmol/L; ≥1 of risk factors including age (male ≥ 45 years old, female ≥ 55 years old), smoking, HDL-C ≤ 1.04 mmol/L, obesity and family history of early-onset ischemic heart disease [13]. Patients with the following condition were excluded from the study: secondary hyperlipidemia, primary hypothyroidism, nephritic syndrome or renal impairment; type 1 or 2 diabetes without satisfactory glucose control; active liver disease, ALT and AST more than two times greater than the normal value; increase of creatine kinase (CK) to ≥ three times of the upper limit of the normal range or by unexplained reasons; being allergic or intolerant to the statin drug; long-term use of steroid hormones or thiazide diuretic agent in combination with statins, which could increase the risk of rhabdomyolysis; uncontrolled severe hypertension; taking other lipid-lowering drugs other than the statins used in the study. Prior to initiation of the trial, each enrolled patient provided signed informed consent.

Study design

This randomized open-label study was ratified by the ethnic committee of the fourth affiliated hospital of Harbin medical college. According to the China Adult Dyslipidemia Prevention Guide criteria (2007 Edition), 10 mg/day of Atorvastatin and 5-10 mg/day of rosuvastatin are recommended as sufficient dose to decrease LDL-C by 30-40%. Based on clinical experience, 20 mg/day was chosen in the current study to achieve optimal efficacy without side effect. In the study, 90 patients were randomly divided into Atorvastatin and rosuvastatin groups, which received atorvastatin (Lipitor) 20 mg/day (Pfizer, USA) and rosuvastatin (Crestor) 20 mg/day (AstraZeneca, England) for 8 weeks, respectively. All the patients stopped administration of lipid-lowering drugs 4 weeks before onset of the study. Because it is considered that lipid-lower drugs have been metabolized after 5 half-lives in 4 weeks and would not affect the result of the study. Furthermore, none of enrolled patients was on the prescription of other medicines that might influence the effect of statins.

Finally, 71 patients finished the assigned treatment, including 30 patients involved in the Atorvastatin group and 41 patients involved in the Rosuvastatin group. The other 19 patients who failed to take medications or laboratories tests as required were excluded from the study. Prior to and after the treatment, venous blood sample was drawn from each patient after a 12-hour fast, respectively. TG, TC, LDL-C, and HDL-C were tested using Cobas 8000 automatic biochemical analyzer (Roche, Germany), respectively.

Efficacy endpoints

Primary endpoints of the present study were the percentages of patients attaining the treatment goal of LDL-C or TC in each group after 8 weeks of treatment according to the NCEP ATP III. Secondary endpoints consisted of the changes between before and after the 8 week
Comparison of rosuvastatin with atorvastatin in Chinese dyslipidemic patients

Table 1. Demographic characteristic of the patients in Rosuvastatin and Atorvastatin groups

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Rosuvastatin group (n=41)</th>
<th>Atorvastatin group (n=30)</th>
<th>Total (n=71)</th>
<th>t-value/X²</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>60.5±9.7</td>
<td>60±9.0</td>
<td>60.3±9.2</td>
<td>0.221</td>
<td>0.83</td>
</tr>
<tr>
<td>Male/Female [n (%)]</td>
<td>23 (56.1)/18 (43.9)</td>
<td>18 (60.0)/12 (40.0)</td>
<td>41 (57.1)</td>
<td>0.108</td>
<td>0.74</td>
</tr>
<tr>
<td>Body weight index (kg/m²)</td>
<td>24.9±3.2</td>
<td>24.9±3.0</td>
<td>24.9±3.1</td>
<td><0.001</td>
<td>1</td>
</tr>
<tr>
<td>Hypertension [n (%)]</td>
<td>12 (29.3)</td>
<td>8 (26.7)</td>
<td>20 (28.2)</td>
<td>0.058</td>
<td>0.81</td>
</tr>
<tr>
<td>Diabetes [n (%)]</td>
<td>4 (9.76)</td>
<td>3 (10.0)</td>
<td>7 (9.86)</td>
<td><0.001</td>
<td>1</td>
</tr>
<tr>
<td>Smoking [n (%)]</td>
<td>17 (41.3)</td>
<td>12 (40.0)</td>
<td>29 (40.8)</td>
<td>0.015</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Age and Body weight index were expressed as mean ± standard deviation.

Table 2. Serum lipid changes of Rosuvastatin and Atorvastatin groups

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Rosuvastatin group (n=41)</th>
<th>Atorvastatin group (n=30)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 week</td>
<td>8 week</td>
<td>Change</td>
</tr>
<tr>
<td>TC (mmol/L)</td>
<td>6.52±0.78</td>
<td>4.22±0.86</td>
<td>↓35.2</td>
</tr>
<tr>
<td>LDL-C (mmol/L)</td>
<td>3.99±0.61</td>
<td>2.18±0.79</td>
<td>↓45.3</td>
</tr>
<tr>
<td>HDL-C (mmol/L)</td>
<td>1.40±0.54</td>
<td>1.49±0.43</td>
<td>↑5.7</td>
</tr>
<tr>
<td>TG (mmol/L)</td>
<td>2.23±0.69</td>
<td>1.79±0.72</td>
<td>↓19.7</td>
</tr>
</tbody>
</table>

Table 3. Goal attainment rates of Rosuvastatin and Atorvastatin groups

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Rosuvastatin group (n=41)</th>
<th>Atorvastatin group (n=30)</th>
<th>X²</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL-C</td>
<td>23(56.1%)</td>
<td>12(40%)</td>
<td>1.796</td>
<td>0.180</td>
</tr>
<tr>
<td>TC</td>
<td>21(51.2%)</td>
<td>11(36.7%)</td>
<td>1.482</td>
<td>0.223</td>
</tr>
</tbody>
</table>

Efficacy analysis

As shown in Table 2, insignificant difference was observed in TG, TC, LDL-C and HDL-C between the Atorvastatin and Rosuvastatin groups (P>0.05) before the treatment. At 8 weeks after the treatment, LDL-C in Rosuvastatin and Atorvastatin groups decreased by 45.3% and 39.2%, respectively. The magnitude of decrease in LDL-C was significantly different between the two groups (P<0.05). Similarly, TC in Rosuvastatin group also decreased significantly greater than that in Atorvastatin group (35.2% vs. 29%, P<0.05). Besides, both groups had decreased TG and increased HDL-C at 8 weeks after the treatment in comparison with those before the treatment. Nonetheless, no significant difference was observed in magnitude of decrease of TG or increase of HDL-C between the two groups (P>0.05).

According to the ATP III of NCEP [12], 55.1% of patients achieved the LDL-C goal of <100 mg/dL in the Rosuvastatin group, while 40% achieved the LDL-C goal in the Atorvastatin group. The goal attainment rate of LDL-C in the Rosuvastatin group was higher than that in the Atorvastatin group. Similarly, Rosuvastatin treatment in LDL-C, TC and HDL-C and TG levels.

Safety

Safety events were closely monitored and assessed throughout the study, including abnormal laboratory variables.

Statistical analysis

Quantitative data was expressed as median ± standard deviation (SD). Student’s t test was used to compare the differences of quantitative data. Chi-square test was applied for qualitative data comparison. SPSS 15.0 software was employed to perform statistical analysis in the present study. Difference with p-value<0.05 was defined to be significant.

Result

Demographics of patients

Demographic data of the 71 patients in Atorvastatin and Rosuvastatin groups was displayed in Table 1. The two groups had insignificant discrepancy in age, sex, body-weight index, hypertension, diabetes and smoking (P>0.05).
Comparison of rosuvastatin with atorvastatin in Chinese dyslipidemic patients

The study showed that significantly better reduction of LDL-C and TC was achieved with daily dose of 20 mg of Rosuvastatin for 8 weeks in comparison with the same dose of Atorvastatin. Moreover, the medication of Rosuvastatin resulted in higher percentage of patients attaining the recommended goal of LDL-C and TC than medication of Atorvastatin. Our study reflected that Chinese patients with high-risk dyslipidemia were also more sensitive to Rosuvastatin than Atorvastatin.

These findings were in concordance with a previous study reporting that more patients with Rosuvastatin (10 to 40 mg) have achieved LDL-C levels <100 mg/dl than those with atorvastatin [17]. Similarly, another randomized and open-label trial has found that rosuvastatin treatment at 10 mg is capable to lead to more patients at high risk of CHD reaching the NCEP ATP III LDL-C goal compared with atorvastatin at 10 mg/day and simvastatin at 20 mg/day.
Comparison of rosuvastatin with atorvastatin in Chinese dyslipidemic patients

There is evidence that Rosuvastatin (10 mg and 20 mg) facilitates 63.95% of patients with dyslipidaemia to achieve the total cholesterol target of ATP III in Indian [19]. Similarly, 20 mg of Atorvastatin or of Rosuvastatin was adopted in the present study based on clinical experience, because Atorvastatin (10 mg) and Rosuvastatin (5-10 mg) are sufficient to reduce LDL-C by 30-40% according to the China Adult Dyslipidemia Prevention Guide criteria (2007 Edition). It suggested Rosuvastatin at 20mg might be suitable for Asian patients with dyslipidemia.

It should be noted that approximately 44.9% of patients failed to achieve the target goal of LDL-C even with Rosuvastatin, suggesting the need of improvements of the lipid-lowering medications. A recent study in USA has demonstrated that medication of ezetimibe together with Rosuvastatin could achieve a better reduction of LDL-C compared to Rosuvastatin alone [20]. A randomized trial has shown that combination of Atorvastatin and SAR236553, an antibody against serum proprotein convertase subtilisin/kexin 9 (PCSK9) exhibits a better lipid-lowering effect than the same dose of Atorvastatin [21]. It delivers a clue that addition of SAR236553 might also strengthen the lipid-lowering effect of Rosuvastatin. More efforts should be made to further improve or optimize the efficacy of Rosuvastatin. In the current study, the two drugs showed similar safety, and few adverse events were observed during the 8 weeks.

The study has limitations. First, its samples size is relatively small. Large scale studies should be conducted to confirm and extend the finding of the study. Second, it should be mentioned that there is an imbalance in the number of withdrawals between Atorvastatin and Rosuvastatin groups, which might potentially be a source of bias, although there is insignificant difference in demographic and baseline characteristics between the two groups.

Conclusion

Generally, medication of Rosuvastatin could reach a better lipid-reducing effect and yield a higher attainment rate of LDL-C and TC than Atorvastatin in same dose in high risk hyperlipidemic Chinese patients. The study afforded additional evidence supporting superior therapeutic efficacy of Rosuvastatin over Atorvastatin.

Acknowledgements

This study was supported by Clinical efficacy and safety studies of Rosuvastatin (No. 2013RFQYJ156).

Disclosure of conflict of interest

None.

Address correspondence to: Jingru Cui, Department of Pharmaceutical, The Forth Affiliated Hospital of Harbin Medical University, No. 37 Yiyuan Street, Nangang District, Harbin 150001, China. Tel: 86-0451-85939577; Fax: 86-0451-85939577; E-mail: cjinriin@163.com

References

Comparison of rosuvastatin with atorvastatin in Chinese dyslipidemic patients

