Original Article

MTHFR C677T polymorphism and coronary artery disease risk in the Chinese population: a meta-analysis based on 33 studies

Jiang-Gui Shan, Song Xue

Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China

Received September 29, 2015; Accepted December 19, 2015; Epub February 15, 2016; Published February 29, 2016

Abstract: Background: Although many epidemiologic studies have investigated the MTHFR C677T polymorphism and its associations with coronary artery disease (CAD), definite conclusions cannot be drawn. To clarify the impact of methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism on the risk of CAD, a meta-analysis was performed in the Chinese population. Methods: Related studies were identified from PubMed, Springer Link, Ovid, Chinese Wanfang Data Knowledge Service Platform, Chinese National Knowledge Infrastructure (CNKI), and Chinese Biology Medicine (CBM) till March 2015. The odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to estimate the strength of the associations. Results: A total of 33 studies including 6130 CAD cases and 6163 controls were involved in this meta-analysis. Overall, significant association was found between MTHFR C677T polymorphism and CAD risk when all studies in the Chinese population pooled into this meta-analysis (T vs. C: OR = 1.44, 95% CI = 1.29-1.61; TT vs. CC: OR = 1.88, 95% CI = 1.54-2.30; TT vs. CC+CT: OR = 1.41, 95% CI = 1.22-1.62; TT + CT vs. CC: OR = 1.71, 95% CI = 1.45-2.02). When we performed stratified analyses by geographical locations and source of controls, significantly increased risks were found in all the subgroups. Conclusions: This meta-analysis provides the evidence that MTHFR C677T polymorphism may contribute to the CAD development in the Chinese population.

Keywords: Meta-analysis, MTHFR C677T, polymorphism, coronary artery disease, Chinese

Background

Coronary artery disease (CAD), one of the major causes of morbidity and mortality worldwide [1], had become a public health problem in China during the past few decades. Recently, age-standardized CAD mortality increased in China, in contrast to the declining trends in various developed countries [2]. The overall CAD mortality rate (per 100000 individuals per year) in China was projected to rise from 95.3 in 1999 to 103.4 in 2008 [3]. In 2008, crude morbidity rate of ischemic heart disease was 12.7% among Chinese urban residents [4]. Numerous epidemiological studies have identified several risk factors for CAD, including dyslipidaemia, diabetes, obesity, birth weight, smoking, dietary, gender, and genetic variance [5]. In recent years the role of genetic variability on the development of CAD has been extensively studied [6], which is impacting upon our understanding of phenotypic outcomes and clinical complications. An important one is Methylenetetrahydrofolate reductase (MTHFR), which plays a critical role in folate metabolism and is involved in DNA synthesis, DNA repair and DNA methylation. A common polymorphism in MTHFR gene at nucleotide 677C/T (amino acid 222Ala/Val, rs1801133) has drawn special attention as its mutation can impair the enzyme activity and hyperhomocysteinemia [7]. An association between MTHFR C677T polymorphism and CAD was first reported by Kang and co-workers in 1988 in Chicago [8]. As a consequence, many studies analyzed the influence of MTHFR C677T polymorphism on CAD risk, however, no clear consensus was reached. Meta-analyses of studies on the gene in other ethnic groups have been reported elsewhere [9-14]. Mo-
reover, two appraisals [15, 16] also conclude that more accurate evaluation of MTHFR C677T polymorphism with CAD in specific population needs to be presented. In order to clarify the effects of MTHFR C677T on the risk of CAD in Chinese, an updated meta-analysis was performed.

Methods

Literature search

A comprehensive literature search was performed using the PubMed, Springer Link, Ovid, Chinese Wanfang Data Knowledge Service Platform, Chinese National Knowledge Infrastructure (CNKI), and Chinese Biology Medicine (CBM) for relevant articles published with the following Mesh terms: (coronary artery disease or coronary heart disease) and (methylenetetrahydrofolate reductase or MTHFR) and (Chinese or China or Taiwan). An upper date limit of 13 March 2015 was applied and no lower date limit was used. The search was performed without any restrictions on language and focused on studies conducted in humans. Concurrently, the reference lists of reviews and retrieved articles were searched manually.

Inclusion/exclusion criteria

For inclusion, the studies must have met the following criteria: (1) case-control study or cohort study studying on association between the MTHFR C677T polymorphisms and CAD susceptibility; (2) all patients diagnosis based on angio- graphic features, clinical or laboratory findings; (3) sufficient published data about sample size, odds ratio (OR), and their 95% confidence interval (CI); (4) all participants were Chinese; (5) containing complete information about all genotype frequencies. Studies were excluded when they were: (1) not case-control study or cohort study; (2) duplicate of previous publication; (3) based on incomplete data; (4) meta-analyses, letters, reviews, or editorial articles.

Data extraction

Information was extracted carefully from all eligible studies independently by two investigators according to the inclusion criteria listed above. Disagreements were resolved by discussion. The title and abstract of all potentially relevant articles were screened to determine their relevance. Full articles were also scrutinized if the title and abstract were ambiguous. The following data was collected from each study: first author’s surname, year of publication, geographical locations, source of controls, total numbers of cases and controls, and the numbers of cases and controls who harbored the MTHFR C677T genotypes.

Statistical analysis

Statistical analysis was conducted by using STATA statistical package (version 10, STATA, College Station, TX). The χ²-test was used for Hardy-Weinberg equilibrium (HWE) of genotypes in the control group of each reviewed study and the heterogeneity of rare allele frequencies in control groups among all studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association between the MTHFR C677T poly-
morphism and CAD risk. The significance of the pooled OR was determined by the Z test. Dependent on the results of heterogeneity test among individual studies, the fixed-effect model (Mantel-Haenszel) or random-effect model (DerSimonian and Laird) was selected to summarize the combined ORs and their 95% CIs. Sensitivity analysis was conducted to verify stability of the meta-analysis using both models (the fixed effect model and random effect model). Begg's funnel plots and Egger's linear regression test were used to assess publication bias. In addition to the comparison among all subjects, we also performed stratification analyses by geographical locations and source of controls. All the P-values were two-sided, a P-value <0.05 was considered statistically significant.

Results

Eligible studies

Figure 1 graphically illustrates the trial flow chart. A total of 154 articles regarding MTHFR
polymorphisms with respect to CAD were identified. After screening the titles and abstracts, 108 articles were excluded because they were review articles, duplicates, not Chinese population, or irrelevant to the current study. In addition, of these published articles, 13 articles were excluded for full-text articles assessing due to no controls, unavailable data, reduplicate studies, or other polymorphisms of MTHFR. Finally, 33 studies including 6130 CAD cases and 6163 controls were involved in this meta-analysis according to the inclusion criteria. The publication year of studies ranged from 1998 to 2014. Twenty-nine of these studies were written in Chinese, four studies in English. The characteristics of the included studies are summarized in Table 1.

Meta-analysis results

Table 2 lists the primary results. Overall, a significantly elevated risk of CAD was associated with all variants of MTHFR C677T (TT vs. CC: OR = 1.88, 95% CI = 1.54-2.30; TT vs. CC+CT: OR = 1.41, 95% CI = 1.22-1.62; TT + CT vs. CC: OR = 1.71, 95% CI = 1.45-2.02). For the allele T versus allele C, the pooled OR was 1.44 (95% CI = 1.29-1.61) (Figure 2). However, there was significant heterogeneity between studies. Hence, we then performed subgroup analysis by geographical locations and source of control. In the stratified analysis by geographical locations, significantly increased risks were found both in the North China (T vs. C: OR = 1.45, 95% CI = 1.27-1.65; TT vs. CC: OR = 1.92, 95% CI = 1.52-2.42; TT vs. CC+CT: OR = 1.44, 95% CI = 1.21-1.70; TT + CT vs. CC: OR = 1.75, 95% CI = 1.42-2.15) and in the South China (T vs. C: OR = 1.39, 95% CI = 1.12-1.72; TT vs. CC: OR = 1.69, 95% CI = 1.15-2.49; TT + CT vs. CC: OR = 1.62, 95% CI = 1.19-2.20). In the stratified analysis by source of controls, significantly increased risks were found in the population-based studies (T vs. C: OR = 1.50, 95% CI = 1.22-1.83; TT vs. CC: OR = 2.03, 95% CI = 1.39-2.97; TT vs. CC+CT: OR = 1.50, 95% CI = 1.14-1.96; TT + CT vs. CC: OR = 1.75, 95% CI = 1.33-2.31) and in the hospital-based studies (T vs. C: OR = 1.38, 95% CI = 1.21-1.58; TT vs. CC: OR =

Table 2. Main results in the total and subgroup analysis

<table>
<thead>
<tr>
<th>Analysis model</th>
<th>Study groups</th>
<th>n</th>
<th>Random-effect model</th>
<th>Fixed-effect model</th>
<th>Heterogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>OR (95% CI)</td>
<td>OR (95% CI)</td>
<td>χ²</td>
</tr>
<tr>
<td>T vs. C</td>
<td>Total analysis</td>
<td>33</td>
<td>1.44 (1.29-1.61)</td>
<td>1.31 (1.24-1.38)</td>
<td>115.59</td>
</tr>
<tr>
<td></td>
<td>PB</td>
<td>15</td>
<td>1.50 (1.22-1.83)</td>
<td>1.30 (1.20-1.41)</td>
<td>70.94</td>
</tr>
<tr>
<td></td>
<td>HB</td>
<td>17</td>
<td>1.38 (1.21-1.58)</td>
<td>1.30 (1.21-1.39)</td>
<td>42.09</td>
</tr>
<tr>
<td></td>
<td>South China</td>
<td>13</td>
<td>1.39 (1.12-1.72)</td>
<td>1.20 (1.09-1.31)</td>
<td>50.09</td>
</tr>
<tr>
<td></td>
<td>North China</td>
<td>19</td>
<td>1.45 (1.27-1.65)</td>
<td>1.35 (1.26-1.44)</td>
<td>54.23</td>
</tr>
<tr>
<td>TT vs. CC</td>
<td>Total analysis</td>
<td>33</td>
<td>1.88 (1.54-2.30)</td>
<td>1.63 (1.47-1.82)</td>
<td>86.73</td>
</tr>
<tr>
<td></td>
<td>PB</td>
<td>15</td>
<td>2.03 (1.39-2.97)</td>
<td>1.58 (1.34-1.85)</td>
<td>54.00</td>
</tr>
<tr>
<td></td>
<td>HB</td>
<td>17</td>
<td>1.72 (1.37-2.16)</td>
<td>1.64 (1.42-1.89)</td>
<td>29.23</td>
</tr>
<tr>
<td></td>
<td>South China</td>
<td>13</td>
<td>1.69 (1.15-2.49)</td>
<td>1.31 (1.09-1.58)</td>
<td>30.16</td>
</tr>
<tr>
<td></td>
<td>North China</td>
<td>19</td>
<td>1.92 (1.52-2.42)</td>
<td>1.78 (1.55-2.03)</td>
<td>44.22</td>
</tr>
<tr>
<td>TT vs. CC+CT</td>
<td>Total analysis</td>
<td>33</td>
<td>1.41 (1.22-1.62)</td>
<td>1.35 (1.23-1.48)</td>
<td>56.13</td>
</tr>
<tr>
<td></td>
<td>PB</td>
<td>15</td>
<td>1.50 (1.14-1.96)</td>
<td>1.32 (1.14-1.52)</td>
<td>35.04</td>
</tr>
<tr>
<td></td>
<td>HB</td>
<td>17</td>
<td>1.33 (1.14-1.55)</td>
<td>1.35 (1.19-1.53)</td>
<td>19.03</td>
</tr>
<tr>
<td></td>
<td>South China</td>
<td>13</td>
<td>1.21 (0.97-1.52)</td>
<td>1.213 (0.99-1.33)</td>
<td>14.38</td>
</tr>
<tr>
<td></td>
<td>North China</td>
<td>19</td>
<td>1.44 (1.21-1.70)</td>
<td>1.43 (1.28-1.61)</td>
<td>32.17</td>
</tr>
<tr>
<td>TT + CT vs. CC</td>
<td>Total analysis</td>
<td>33</td>
<td>1.71 (1.45-2.02)</td>
<td>1.45 (1.34-1.56)</td>
<td>119.35</td>
</tr>
<tr>
<td></td>
<td>PB</td>
<td>15</td>
<td>1.75 (1.33-2.31)</td>
<td>1.44 (1.28-1.61)</td>
<td>63.06</td>
</tr>
<tr>
<td></td>
<td>HB</td>
<td>17</td>
<td>1.68 (1.34-2.10)</td>
<td>1.43 (1.29-1.59)</td>
<td>54.63</td>
</tr>
<tr>
<td></td>
<td>South China</td>
<td>13</td>
<td>1.62 (1.19-2.20)</td>
<td>1.32 (1.17-1.50)</td>
<td>53.91</td>
</tr>
<tr>
<td></td>
<td>North China</td>
<td>19</td>
<td>1.75 (1.42-2.15)</td>
<td>1.50 (1.36-1.66)</td>
<td>59.15</td>
</tr>
</tbody>
</table>

PB, Population-based, HB, hospital-based, South China includes Hunan, Taiwan, Zhejiang, Fujian, Guangdong, Guizhou, Hubei, Yunnan, Jiangsu and Chongqing; North China includes Heilongjiang, Beijing, Tianjin, Shaxi, Xinjiang, Liaoning, Inner Mongolia, Anhui, Ningxia, Shandong and Henan.
Sensitive analysis and bias diagnosis

In order to compare the difference and evaluate the sensitivity of the meta-analyses, we used both models (the fixed effect model and random effect model) to evaluate the stability of the meta-analysis. None of the results were materially altered (Table 2). Hence, results of the sensitivity analysis suggest that the data in this meta-analysis are relatively stable and credible. The Begg’s funnel plot and Egger’s test were performed to assess the publication bias of literatures. The shape of the funnel plots did not reveal obvious asymmetry (Figure 3A). Then, the Egger’s test was used to provide statistical evidence of funnel plot symmetry. However, the Egger’s test indicated that there were obvious publication bias under the allele model in overall analyses (t = 3.06, P = 0.005, Figure 3B).

Figure 2. Forest plot (random-effects model) of CAD risk associated with MTHFR C677T polymorphism using the allele genetic model.
MTHFR and CAD in Chinese

Discussion

Up to this time, a series of meta-analyses have been carried out to investigate the role of MTHFR C677T polymorphism in the development of CAD in some ethnic groups, but these have produced conflicting or inconclusive results [9-14]. One of major problems with these meta-analyses [9-14] is that there are limited studies in the Chinese population contained. A recent meta-analysis was done to clarify the relationship in the Chinese population, however, there is some space needed to improve in the article [50] due to the relevant small sample size. Therefore, we conducted this meta-analysis to derive a more precise estimation of MTHFR C677T and susceptibility to CAD in the Chinese population. Our meta-analysis involved 33 case-control studies with 6130 patients and 6163 controls. The results showed that a significantly elevated risk of CAD was associated with all variants of MTHFR C677T in the Chinese population. The results were consistent with Li’s meta-analysis [50] which based on fourteen studies and the sensitivity analysis confirmed the reliability and stability. Therefore, the findings from our meta-analysis provide a strong evidence for the association between MTHFR C677T polymorphism and risk of CAD in the Chinese population.

To further explain environmental risk factors can modulate the risk, subgroup analyses stratified by geographical locations and source of controls were performed. We found that the variants of MTHFR C677T significantly increase the risk of CAD in population-based studies, in hospital-based studies, in North and South China. However, the risk conferred by MTHFR C677T polymorphism is higher in North China than in South China (Table 2). So, genetic backgrounds and the environment they lived in play an important role in susceptibility to CAD. There are different living habits in South and North China. Moreover, according to the previous studies, there exist seasonal and gender differences in folate status among the Chinese people [51, 52]. People living in North China have a higher prevalence folate concentration deficiency [51]. These results support the hypothesis, suggesting that concomitant inadequate folate intake and impaired MTHFR activity might be important susceptibility factors for CAD.

Some limitations of this meta-analysis should be addressed. The key limitation of this study is the lack of an assessment of folate status.
However, considering stratification by geographical locations, the folate status may have limited influence on the association between MTHFR C677T polymorphism and CAD susceptibility. Another potential limitation was that our results were based on unadjusted estimates. More precise analyses can be conducted if individual data were available, which would allow for the adjustment by other covariates including age, sex, race and other factors. Third, publication bias has occurred due to that only published articles were included in this study. Finally, heterogeneity can interfere with the interpretation of the results of a meta-analysis. Although we minimized this likelihood by performing a careful search of published studies and subgroup analyses, significant inter-study heterogeneity nevertheless existed in most of the comparisons.

In conclusion, this meta-analysis suggests that MTHFR C677T polymorphism is associated with CAD in the Chinese population. The variants of MTHFR C677T increased susceptibility to CAD both in North and South China. And the risk conferred by MTHFR C677T polymorphism is higher among people from North China than South China. Further studies analyzing gene-gene and gene-environment interactions are required. Such studies may eventually lead to a better, comprehensive understanding of the association between the MTHFR C677T polymorphism and CAD risk.

Disclosure of conflict of interest

None.

Authors’ contribution

JS and SX participated in the design of this study, they both performed the data collection and statistical analysis. JS drafted the manuscript. All authors read and approved the final manuscript.

Address correspondence to: Song Xue, Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China. Tel: +86 21 68383764; E-mail: shrenjixs@126.com

References

