Breast cancer imaging with fluorescein isothiocyanate-modified gold nanoparticles in-vitro and in-vivo

Guanghua Yang, Sen Xiang, Kaifang Zhang, Dongdong Gao, Chen Zeng, Fuli Zhao

Department of Medical Oncology, Zhumadian Central Hospital, Zhumadian 463000, Henan Province, China

Received September 26, 2015; Accepted December 8, 2015; Epub February 15, 2016; Published February 29, 2016

Abstract: Objective: To prepare fluorescein isothiocyanate (FITC)-modified gold nanoparticles (FITC-Au NPs) and conduct in-vitro and in-vivo breast cancer imaging studies with them. Methods: Nanosizer and transmission electron microscopy were used to characterize the diameter and morphology of FITC-Au NPs and their stability; UV spectrophotometer and fluorescence spectrometer were used to detect the UV and fluorescence spectra of FITC-Au NPs; Cell counting kit (CCK-8) method was used to detect the in-vitro cytotoxicity of Au NPs and FITC-Au NPs in breast cancer 4T1 cells; Confocal microscopy was used to observe FITC-Au NPs uptaken by cells; A small living animals fluorescence imaging system, after tail intravenous injection, was used to observe the distribution of FITC-Au NPs in tumor-bearing mice and the concentration of NPs in the tumor region. Results: The average diameter of Au NPs and FITC-Au NPs were 43 nm and 52.6 nm, respectively. FITC-Au NPs were globular nanoparticles. After standing for 28 days, NPs and FITC-Au NPs showed no change in diameter. The UV spectra of FITC-Au NPs showed a characteristic absorption peak of FITC and Au NP, and the maximal emission peak of FITC-Au NP (520 nm) was excited by 488 nm laser. No significant cytotoxicity was found for cells treated by 0-150 ug/ml of Au NPs and FITC-Au NPs for 12 or 24 hours. Compared with free FITC, FITC-Au NP were uptaken by cells remarkably. In addition, results of in-vivo study indicated that FITC-Au NPs passively targeted the tumor region efficiently. Conclusion: FITC-Au NPs can be applied as the contrast agent of in-vivo and in-vitro breast cancer fluorescence imaging, providing a molecular imaging basis for the medical diagnosis of breast cancer.

Keywords: Gold nanoparticle, isothiocyanate, fluorescence imaging, tumor imaging and diagnosis

Introduction

Breast cancer is one of the major diseases affecting women’s health. It is reported that its incidence ranks first among malignant tumors in women across the world [1, 2]. For the treatment of malignant tumors, early diagnosis, periodic monitoring and timely treatment are crucial [3, 4]. In recent years, the diagnosis, monitoring and treatment of tumors have developed rapidly. However, there are still problems, such as low resolution of diagnostic techniques [5, 6]. Therefore, it is vital to find out an effective diagnostic method.

Nanogold is a member of nano material family. It has such special physical and chemical properties as super-large specific surface area and physical absorption ability. Because of its monodispersity and good biocompatibility without toxicity or accumulation when used as molecular or drug carriers, it is very promising in the diagnosis, monitoring and treatment of tumor [7-9]. Besides, as a new contrast agent, nanogold is of great potential in the diagnosis and monitoring of tumor [10-12].

In this study, taking advantage of the surface adsorption ability of nanogold, we obtained fluorescent gold nanoparticles by attaching nanogold to isothiocyanate, a commonly used near-infrared fluorescent dye. It was reported that gold nanoparticles as carriers were of good passive tumor-targeting properties due to the high permeability and enhanced permeation and retention (EPR) of solid tumor [13-15]. Therefore, in-vitro and in-vivo breast cancer imaging was conducted by utilizing the fluorescent gold nanoparticles prepared and fluorescence imaging system, which provided a new
FITC-Au NPs for human breast cancer imaging in-vitro and in-vivo

approach for the diagnosis of breast cancer and a new contrast agent for its imaging.

Materials and methods

Experimental materials and instruments

Gold nanoparticles (article No.: NS-40-50) was purchased from NanoSeedz (Hong Kong), iso-sulfocyanide (FITC) and phenylindole (DAPI) from Sigma (the U.S.), RPMI1640 cell culture medium and fetal calf serum from Gibco (the U.S.), cell counting kit from Dojindo (Japan), nanosizer Zettersizer Nano ZS from Malvern (England), transmission electron microscope LVEM25 from DELONG (the U.S.), UV/Vis./NIR Spectrophotometer V-700 from JASCO (Japan), fluorescence spectrophotometer S1 Sorter from Bruker (the U.S.), confocal microscopy system Leica FCM1000 from Leica (German) and small living animal fluorescence imaging system Maestro from CRi Maestro (the U.S.).

Synthesis of FITC-Au NPs

FITC was dissolved in DMSO, getting 1 mg/ml solution, which was added into 0.5 mg/ml Au NP aqueous solution and was stirred slowly overnight under 4°C. The mixture was then centrifuged with a 30 KD a centrifugal ultra filter under a centrifugal force of 6000 g for 30 min. Afterwards, it was dialyzed with an activated dialysis bag until excessive FITC molecules were removed. The purified FITC-Au NP solution was stored in a refrigerator at 4°C.

Characterization of FITC-Au NPs

The average diameter of Au NPs and FITC-Au NPs were measured with a nano-particle size analyzer. The morphology of FITC-Au NPs was observed by transmission electron microscopy. Their UV and fluorescence spectra of FITC, Au NPs and FITC-Au NPs were detected with a UV/Vis/NIR spectrophotometer and fluorescence spectrophotometer, respectively.

Cytotoxicity test of Au NPs and FITC-Au NPs

Mice breast cancer cells 4T1 from the cell bank of Shanghai Institutes for Biological Sciences (CAS) were cultivated in a incubator with RPMI-1640 medium (including 0% fetal calf serum and 1% penicillin-streptomycin) and 5% CO₂ at 37°C. Cell suspension (density: 10⁵ cells/ml) was prepared by using cells in logarithmic growth phase and cultured in a 96-well cell culture plate (4 wells per group, 100 ul per well) for 24 hours. Then, the old culture solution was discarded and cells were treated with 0-150 ug/ml Au NPs and FITC-Au NP for 12 and 24 hours, respectively. This culture solution was discarded again and a new one with 10% CCK-8 reagent was added to incubate for 30 min. Finally, the resultant mixture was detected for the absorbance at 450 nm (A450) with a microplate reader. The bigger the A450, the larger the cell viability.

Cell imaging test by confocal microscopy

Cell suspension (density: 10⁶ cells/ml) was prepared by using cells in logarithmic growth phase and cultured in a confocal dish until cell adherence was observed. After that, the old culture solution was removed and a new one with 30 ug/ml FITC-Au NPs was added. After culturing for 3 hours, the cells were rinsed with PBS for 3 times. At last, an appropriate amount of PBS was added and the mixture obtained was observed under a confocal microscope.

Small mice fluorescence imaging test in-vivo

Female BALB/c nude mice (SPF) were purchased from Vital River Laboratory Animal Technology Co. Ltd. (Beijing). The subcutaneous transplantation tumor model of human breast cancer in mice was established according to the following steps: 150 ul cell suspension (c.a. 10⁶ cells) was injected subcutaneously in the back; After disinfection, the mice were raised in animal houses again; About 7 to 10 days later, when the tumor volume was found to be up to 100 mm³, FITC and FITC-Au NPs were injected into tumor-bearing mice through caudal vein. Moreover, mice imaging test was conducted by a whole-body fluorescent imaging system pre-injection and 0.1, 1, 2, 6, 12, 24 and 48 hours after injection, and a statistical analysis of fluorescence around the tumor region was performed (7 mice per group).

Statistical analysis

Statistical data was expressed by mean ± S.D. Comparison between groups was conducted by independent sample t test. Statistical analysis was performed by a statistical software.
Results

Characterization of FITC-Au NPs

As shown in Figure 1, the average diameter of Au NPs was about 43 nm. After attaching to FITC, the diameter increased to 52.6 nm, indicating that FITC was attached to the surface of Au NPs. Electron microscopy (Figure 2) suggested that FITC-Au NPs were globular nanoparticles. As shown in Figure 3, the diameter almost had no obvious change after Au NPs and FITC-Au NPs solutions stood for 28 days.

Spectrum test of FITC-Au NPs

As shown in Figure 4, FITC had a characteristic absorption peak at 480 nm and Au NP had one at 534 nm. Besides, FITC-Au NP had strong absorption peaks both at 480 nm and 534 nm, suggesting that FITC was attached to the surface of Au NP successfully. As shown in Figure 5, the maximal emission peak was found at 518 nm when FITC was excited by 488 nm laser. Further, the maximal emission peak was
FITC-Au NPs for human breast cancer imaging in-vitro and in-vivo

still found at 518 nm when FITC was attached to the surface of Au NP, indicating the fluorescent property of FITC-Au NP.

Cytotoxicity test of FITC-Au NP

After cells were treated with 0-150 ug/ml Au NP and FITC-Au NP for 12 and 24 hours, respectively, CCK-8 test results showed that Au NP and FITC-Au NP had no obvious impact on cell viability. It demonstrated that fluorescent reagent based on Au NP almost had no cytotoxicity (as shown in Figure 6A and 6B).

Cell uptake of FITC-Au NP

FITC and FITC-Au NP were incubated with cells for 3 hours, respectively. Then, fluorescence signal within cells was observed by confocal microscopy. As shown in Figure 7, the fluores-

Figure 6. The impact of FITC-Au NP on cell viability.

Figure 7. The cell uptake of FITC-Au NP.
FITC-Au NPs for human breast cancer imaging in-vitro and in-vivo

Figure 8. The *in-vivo* fluorescence imaging 24 hours after injection of FITC-Au NP.

Figure 9. The statistical results of fluorescence signal in tumor region at different time points (n=7).

Fluorescence signal in cells treated by FITC in control group was very weak, while the fluorescence signal in cells treated by FITC-Au NP was extremely strong, suggesting a large amount of FITC-Au NP entered into cells.

Whole-body fluorescence imaging

FITC and FITC-Au NP solutions were injected into mice through caudal vein. Then, mice fluorescence imaging was conducted at different time points and the results were presented in Figure 8. 24 hours after injection, almost no fluorescence signal was found within mice in FITC group, while significant fluorescence signal was found in tumor region within mice in FITC-Au NP group. It indicated that FITC-Au NP could gather in tumor region, while FITC was readily to be metabolized and removed. Figure 9 showed statistical results of fluorescence signal within tumor region at different time points. FITC was almost completely metabolized 6 hours after entering into mice, while FITC-Au NP could gather in tumor region for a long time.

Discussion

Functionalized medical nanomaterials, as an emerging field, advanced rapidly in recent years, especially in the treatment and diagnosis of tumor [16, 17], such as nanoliposomes, glairin, carbon nanomaterials and gold nanoparticles [18-20]. Because of their special physical and chemical properties, some functional molecules could be modified on their surface. For example, graphene oxide could be used to carry anti-cancer drug adriamycin. It was of great inhibitory effect on tumor [21]. Further, fluorescent molecules coated by nanoliposomes and modified by targeting molecules on the surface could be used as an active targeting and imaging contrast agent [22]. In this study, gold nanoparticles were used to attach fluorescent molecule FITC for passive targeting for fluorescence imaging of subcutaneous breast cancer. Results suggested that FITC-Au NP had better passive targeting properties and fluorescent imaging effect compared with FITC.

FITC is a fat-soluble small-molecule fluorescent dye. Once entering into body, it is easily to be eliminated and can hardly be gathered in tumor region for imaging [23-25]. Besides, the growth rate of tumor cells is very fast, while that of vascular endothelial cell is slow. A large amount of broken blood vessels presented in tumor. When particles of special sizes get through tumor vessels, they would leak from blood vessels. Hence, it is difficult for FITC to stay. By contrast,
FITC-Au NPs for human breast cancer imaging in-vitro and in-vivo

gold nanoparticles, due to the size and EPR effect in solid tumor, will remain in the tumor region for a longer period [26]. Thus, the blood half-life of fluorescent dyes is increased and they can be better used for in-vivo fluorescent imaging.

To sum up, FITC-Au NP prepared in this study has good in-vivo and in-vitro passive targeting property and fluorescent imaging effect on breast cancer cell, providing a new contrast agent and thought for the medical imaging and diagnosis of breast cancer.

Disclosure of conflict of interest
None.

Address correspondence to: Guanghua Yang, Department of Medical Oncology, Zhumadian Central Hospital, Zhumadian 463000, Henan Province, China. E-mail: yangguanghuazmd@163.com

References

FITC-Au NPs for human breast cancer imaging in-vitro and in-vivo

