Original Article

Positive relationship between the autoantibodies against $\beta_1$, $\beta_2$ and $\alpha_1$-ARs adrenoreceptors and the development of chronic cardiorenal syndrome

Hua Wang1*, Sheng-Nan Li1,3*, Yan-Hong Liang1*, Gui-Ling Ma1, Dong-Yan Hou1, Xiang-Min Lin1, Jia-Mei Liu1, Lin Xu1, Wen-Shu Zhao1, Lin Zhang1,2

1Department of Cardiology, Heart Failure Centre, Capital Medical University, Beijing Chao-Yang Hospital, Beijing 100020, China; 2Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China; 3Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China. *Equal contributors.

Received September 9, 2015; Accepted April 5, 2016; Epub June 15, 2016; Published June 30, 2016

Abstract: Purpose: Previously, we demonstrate that the presence of autoantibodies against $\beta_1$, $\beta_2$ and $\alpha_1$-adrenoceptors are highly prevalent in heart failure and may participate in its pathogenesis. The purpose of the current study is to determine the relationship between the presence of autoantibodies against $\beta_1$, $\beta_2$ and $\alpha_1$-adrenoreceptors and chronic cardiorenal syndrome (CRS). Methods: Synthetic peptides corresponding to amino acid sequences of the second extracellular loops of $\beta_1$, $\beta_2$ and $\alpha_1$-adrenoreceptors were synthesized as antigens to test 30 patients with chronic CRS, 30 heart failure patients without kidney disease and 38 healthy controls for the presence of autoantibodies using enzyme-linked immunosorbent assay. Results: The respective frequencies of autoantibodies against $\beta_1$, $\beta_2$ and $\alpha_1$-adrenoreceptors are 66.6% (20/30), 73.3% (22/30) and 70% (21/30) in patients with chronic CRS, 40.0% (12/30) (P=0.04), 46.7% (14/30) (P=0.03) and 43.3% (13/30) (P=0.03) in heart failure patients without kidney disease and 10.5% (4/38), 7.9% (3/38) and 10.5% (4/38) (P < 0.001) in healthy controls. Titers of these autoantibodies are also significantly increased in patients with chronic CRS. Meanwhile the titers of three autoantibodies have positive correlation with the increase of the value of serum creatinine. Conclusions: This study demonstrates that the presence and titers of autoantibodies against $\beta_1$, $\beta_2$ and $\alpha_1$-adrenoreceptors in patients with chronic CRS are not only significantly increased than those of healthy control group, but also significantly increased than those of heart failure group. We posit that these autoantibodies may be involved in the pathogenesis of chronic CRS.

Keywords: Cardiorenal syndrome, adrenoreceptor, autoantibody

Introduction

Cardiac and renal diseases are common and frequently coexist to significantly increase mortality, morbidity and the complexity and cost of care. Cardio renal syndrome (CRS) is a disorder affecting both the heart and kidneys whereby acute or chronic dysfunction in one organ may induce acute or chronic dysfunction in the other. We identified five sub-types of the syndrome [1, 2]: Acute cardio-renal syndrome (type 1), Chronic cardio-renal syndrome (type 2), Acute reno-cardiac syndrome (type 3), Chronic reno-cardiac syndrome (type 4), and secondary cardio-renal syndrome (type 5).

Chronic cardio-renal syndrome (type 2) means chronic abnormalities in the heart function leads to kidney injury or dysfunction. This subtype refers to a more chronic stage of kidney disease resulting in the complication of chronic heart disease. This syndrome is common and has been reported in 63% of patients hospitalized with congestive heart failure (CHF) [1, 3, 4]. Currently, the factors and mechanisms involved in the pathogenesis of CRS (type 2) remain poorly understood.

Previously, we demonstrated that the presence of autoantibodies against $\beta_1$, $\beta_2$ and $\alpha_1$-adrenoreceptors (anti-$\beta_1$, $\beta_2$ and $\alpha_1$-ARs), which is
Autoantibodies and cardiorenal syndrome

Table 1. Amino acid sequences of human β₁, β₂ and α₁-adrenoreceptors

<table>
<thead>
<tr>
<th>Adrenoreceptor</th>
<th>Position</th>
<th>Sequence</th>
</tr>
</thead>
</table>

The purity of the synthesized peptides corresponding to the amino acid sequence of the second extracellular loop of human β₁, β₂, and α₁ adrenoreceptors, determined by high performance liquid chromatography (HPLC) using a Vydac C-18 column, was 96.66%, 96.21% and 95.34%. The molecular weight of peptides corresponding to the amino acid sequence of the second extracellular loop of human β₁, β₂, and α₁ adrenoreceptors was analyzed by mass spectrometry and the molecular weight was 3484.9, 3237.5 and 2872.2.

Blood samples were collected from antecubital veins at recruitment by tubes containing EDTA, and centrifuged at 2000 rpm for 10 minutes at 4°C within 2 h of the collection. Serum samples were stored at -70°C until the assay was performed.

Materials

Three kinds of peptides corresponding to the amino acid sequence of the second extracellular loop of human β₁, β₂ and α₁ ARs were synthesized by Genomed (Genomed Synthesis, Inc., CA, and USA) and the sequences were shown in Table 1 [8-10]. The purity of the synthesized peptides corresponding to the amino acid sequence of the second extracellular loop of human β₁, β₂ and α₁ ARs, determined by high performance liquid chromatography (HPLC) using a Vydac C-18 column, were 96.66%, 96.21% and 95.34%. The molecular weight of peptides corresponding to the amino acid sequence of the second extracellular loop of human β₁, β₂ and α₁ ARs were analyzed by mass spectrometry and the molecular weights were 3484.9, 3237.5 and 2872.2. Nunc microtiter plates were purchased from Kastrup, Denmark. Tween-20, thimerosal, and ABTS were purchased from Sigma, St. Louis, MO, USA. Fetal bovine serum, biotinylated goat anti-human IgG (H+L), and horseradish peroxidase-streptavidin were bought from Zhongshan Golden Bridge Biotech, Beijing, China. The microplate reader was purchased from Molecular Devices Corp, Menlo Park, CA.

ELISA protocol

Samples were classified into positive or negative based upon the presence or absence of anti-β₁-AR, anti-β₂-AR, and anti-α₁-AR. An ELISA protocol, previously described by Fu et al[11], was used to screen for the presence of the autoantibodies. Briefly, 50 mL of peptide (5 mg/L) in 100 mmol Na₂CO₃ solution (pH=11) was coated on microtiter plates overnight at 4°C. The wells were saturated with PMT (1× PBS, 1 mL/L Tween-20, and 0.1 g/L thimerosal (PBS-T) supplemented with 100 mL/L fetal bovine serum) for 1 hour at 37°C. Then positive control and negative control with 50 mL of serum diluted from 1:20 to 1:160, was added to the wells for 1 hour at 37°C. After washing the wells with PBS-T three times, affinity-puri-
Autoantibodies and cardiorenal syndrome

Table 2. Clinical characteristic of subjects from three groups in the present study

<table>
<thead>
<tr>
<th></th>
<th>Healthy control (n=38)</th>
<th>Heart failure (n=30)</th>
<th>Chronic cardiorenal syndrome (n=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>60.48±9.10</td>
<td>62.48±10.05</td>
<td>68.61±10.14</td>
</tr>
<tr>
<td>Weight (Kg)</td>
<td>68.63±10.10</td>
<td>70.54±10.20</td>
<td>73.63±12.00</td>
</tr>
<tr>
<td>NT-proBNP (pg/mL)</td>
<td>563.79±129.23</td>
<td>9076.48±1035.56***</td>
<td>15696.96±13446.33***</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>68.45±3.01</td>
<td>38.00±4.15***</td>
<td>36.30±5.23&amp;&amp;&amp;</td>
</tr>
<tr>
<td>Scr (μmol/L)</td>
<td>78.67±19.43</td>
<td>92.20±23.56</td>
<td>277.29±237.82&amp;&amp;&amp;&amp;</td>
</tr>
<tr>
<td>Ccr (ml/min)</td>
<td>89.12±7.56</td>
<td>83.58±3.48</td>
<td>33.01±16.47&amp;&amp;&amp;&amp;&amp;&amp;</td>
</tr>
<tr>
<td>GFR (ml/min/1.73 m²)</td>
<td>101.72±10.10</td>
<td>94.35±9.12</td>
<td>28.64±15.05&amp;&amp;&amp;&amp;&amp;&amp;&amp;&amp;</td>
</tr>
</tbody>
</table>

Mean ± SD are shown. Student’s unpaired two-tailed T-test was made between heart failure patients vs. healthy control, cardiorenal syndrome patients vs. heart failure patients and cardiorenal syndrome patients vs. healthy control, and there are significant differences. ***: P < 0.001 heart failure patients vs. healthy control; ***: P < 0.001 cardiorenal syndrome patients vs. heart failure patients; &&&: P < 0.001 cardiorenal syndrome patients vs. healthy control. LVEF: left ventricular ejection fraction; Scr: serum creatinine concentration; Ccr: creatinine clearance rate; GFR: glomerular filtration rate.

Figure 1. Frequencies (A) and geometric mean titers (B) of autoantibodies among the three groups. Frequencies and geometric mean titers of anti-β₁, β₂, and α₁-ARs were significantly higher in the chronic cardiorenal syndrome patients than in the heart failure patients and healthy controls. #: P < 0.05 cardiorenal syndrome patients vs. heart failure patients; ***: P < 0.001 cardiorenal syndrome patients vs. healthy controls;&&: P < 0.05 heart failure patients vs. healthy controls. CRS: chronic cardiorenal syndrome group; HF: heart failure group; HC: Healthy control group.

Data analysis

Quantitative data was expressed as the mean ± SD. Positivity was defined as the ratio of (sample A-blank A)/(negative control A-blank A) ≥ 2.1. Antibody titer was reported as a geometric mean. Data was analyzed using SPSS 16.0. (SPSS, Chicago, Illinois, USA) Fisher’s exact test and unpaired t tests were used to determine the significance in differences between groups. The correlation with autoantibodies was tested using the Spearman correlation coefficient. Association between the presence of autoantibodies and serum creatinine was assessed using multiple logistic regression analysis. P < 0.05 was considered as statistically significance.

Results

Patient characteristics

A total of 98 eligible study subjects were enrolled from March 2013 to September 2013. Patients were divided into three groups based...
Autoantibodies and cardiorenal syndrome

There were 30, 30, and 38 study subjects in the chronic cardiorenal disease group, heart failure group, and healthy control group respectively. There were no significant differences in the proportion of patients with hypertension or other cardiovascular risk factors. The difference between GFR and LVEF among the groups was significantly different (Table 2).

**ELISA results**

Sera positive for anti-β₁-AR was found in 66.6% (20/30) of the chronic CRS group, 40.0% (12/30) (P=0.04) of the heart failure group, and 10.5% (4/38) of the healthy control group. Sera positive for anti-β₂-AR was found in 73.3% (22/30) of the chronic CRS group, 46.6% (14/30) (P=0.03) of the heart failure group, and 7.9% (3/38) of the healthy control group. Positive sera for anti-α₁-AR was found in 70% (21/30) of the chronic CRS group, 43.3% (13/30) (P=0.03) in the heart failure group, and 10.5% (4/38) (P < 0.001) of the healthy control group. Titers of these autoantibodies were also significantly increased in patients with chronic CRS (P < 0.001), see Figure 1A, 1B. With the increase of serum creatinine, titers of these autoantibodies were gradually increased (Figure 2).

Positive sera from the chronic CRS group contain different kinds of autoantibodies. 7 patients were positive for a single autoantibody, nine patients were positive for two kinds of autoantibody, and thirteen patients were positive for all three kinds of autoantibody. A significant correlation was found among anti-β₁-AR and anti-α₁-AR (rs=0.4, P=0.02), anti-β₁-AR and anti-β₂-AR (rs=0.6, P < 0.001). In the chronic CRS group, 55.0% (11/20) of the 20 patients with anti-β₁-AR, were also positive for anti-α₁-AR, and 70.0% (14/20) had anti-β₂-AR.

**Discussion**

In this study, we demonstrated for the first time that positivity for anti-β₁, β₂ and α₁-ARs is associated with chronic CRS. The frequencies and titers of anti-β₁, β₂ and α₁-ARs are significantly higher in patients with chronic CRS, when compared to the heart failure group and the healthy control group. With the increasing serum creatinine, titers of these autoantibodies are gradually increased.

The pathogenesis of chronic CRS has remained obscure, but it is likely multifactorial, involving RAAS effects, NO and ROS imbalance, inflammatory response, SNS overactivity [12]. But the immunological mechanism of chronic CRS has not yet been reported. There are biologically plausible mechanisms involving anti-β₁, β₂ and α₁-ARs leading to chronic CRS. The β₁ and β₂-ARs in the human heart couple to the G protein Gs, to activate adenylyl cyclase. Stimulation on both receptor subtypes increases the intracellular level of cAMP, which leads to phosphorylation of target proteins [13]. α₁-AR coupled predominantly via Gq, causes hydrolysis of membrane phospholipids via phospholipase C, to yield the second messengers inositol triphosphate and diacylglycerol, which leads to muscle contraction through mobilisation of intracellular Ca²⁺ [14] and activation of protein kinase C. Frequencies and titers of anti-β₁, β₂ and α₁-ARs are significantly increased in the chronic CRS group than in the heart failure group and healthy control group. Therefore we posit that there may be a relationship between the presence of anti-β₁, β₂ and α₁-ARs and the development of chronic CRS. Alternatively, it is plausible that chronic CRS triggers the production of anti-β₁, β₂ and α₁-ARs. Further studies are needed to delineate these two possible pathways.
Three kinds of autoantibodies closely related to each other were detected in the chronic CRS group. Approximately 43.3% (13/30) of chronic CRS patients have all three kinds of autoantibodies, which indicate that the autoimmune response in chronic CRS patients is multifaceted.

In conclusion, this pilot study has demonstrated for the first time that the presence and titers of anti-β₁, β₂, and α₁-ARs in patients with chronic CRS are all significantly increased compared with the heart failure group and healthy control group. With the increasing serum creatinine, titers of three autoantibodies are gradually increased. So, the correlation between the presence and titers of autoantibodies against adrenoreceptors and chronic CRS is very high. We posit that immunological mechanisms may be involved in the pathogenesis of chronic CRS. Further studies are needed to confirm these findings and dissect the underlying mechanisms for this novel observation.

Acknowledgements

This project was supported by the Natural Science Foundation of China (81370340) and Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases.

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Lin Zhang, Department of Cardiology, Heart Failure Centre, Capital Medical University, Beijing Chao-Yang Hospital, 8 Gong-Ti South Road, Beijing 100020, China. Tel: +86-1085231066; Fax: 86-1065951064; E-mail: linzhangdn@sina.com

References


