Case Report
The value of esophageal stenting for the treatment of benign tracheoesophageal fistulas: case report

Hai Xu, Jianqun Ma, Jun Wu, Changfa Qu, Fenglin Sun, Shidong Xu

Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin 150086

Received August 26, 2015; Accepted December 11, 2015; Epub January 15, 2016; Published January 30, 2016

Abstract: We report the causes and characteristics of benign tracheoesophageal fistulas (TEF) in 14 cases and investigate the effects of different stenting methods in the treatment of TEF. Among the 14 cases, 2 cases resulted from inflammation, 8 cases from post-esophagectomy complications, 2 cases from complications of esophageal stenting for anastomotic strictures, and 2 cases from complications of chemoradiation. Esophageal stenting was performed as the primary management in 7 cases and only one healed. Severe complications occurred in 6 cases, including 2 cases with esophageal stenosis and 4 cases with death from non-healing fistulas. Five patients were managed conservatively and 4 healed spontaneously. One patient received tracheal stenting but suffered from severe coughing. The other with gastric necrosis and a large fistula with mediastinitis underwent urgent surgical debridement and diversion procedures. Esophageal stenting for benign TEFs carries a high complication rate and mortality and therefore is not recommended.

Keywords: Tracheoesophageal fistula, esophageal stenting, tracheal stenting, post-operative complications, esophageal cancer

Introduction

Tracheoesophageal fistulas (TEFs) can be life threatening and difficult to manage. TEFs commonly occur as a complication of advanced esophageal cancer. Leakage of esophageal contents into the airway may cause life-threatening aspiration pneumonia. Placement of an esophageal stent is a common palliative approach to temporarily seal the fistula to relieve symptoms and prevent such catastrophe in patients with advanced esophageal cancer [1-3].

Benign TEFs are rare and usually the result of trauma or congenital malformation. Benign TEFs are typically managed surgically [4]. The TEF caused by Barrett’s ulcer can heal spontaneously after surgical interventions are performed to control reflux [5]. Surgical treatment for TEFs is a major undertaking which often involves an esophagectomy with significant peri-operative complications and variable outcomes. Therefore, non-surgical treatment such as esophageal stenting is commonly employed. Long-term stenting for benign TEFs has its own problems such as erosion and the need to change the stent. Choosing the right treatment can be difficult and needs to be based on individual cases. The objectives of the current study were to retrospectively review our experience in managing benign TEFs, analyze the causes, and evaluate the outcomes of different treatment options.

Case report

The medical records of these 14 benign TEFs were reviewed. The etiology of the benign TEFs is summarized in Table 1. There were 10 male and 4 female patients, with a mean age of 56 ± 2 years (ranged from 44 to 69 years).

Case #1 one was initially diagnosed with left pneumonia by CT-scan and managed with antibiotics. While the symptoms of fever and cough were not relieved and the tuberculosis was subsequently proved one month later by bronchoscopy. The TEF in this case one was then confirmed with bronchoscopy and esophagoscopy after two weeks of the diagnosis of tuberculosis. The fistula on the esophageal side
measured 6×6 mm at 26 cm from the incisor. The fistula on the tracheal side was located at the left main stem bronchus and measured as 4×5 mm. The patient tolerated an esophageal stent placement and a subsequent liquid diet. The fistula healed 2 weeks following stent placement as demonstrated on a repeat bronchoscopy and the patient was discharged home 1 week later. Eight months later, however, the patient developed dysphagia. Esophagoscopy showed severe hyperplasia and esophageal stricture below the stent (Figure 1A). The granulation tissues were cauterized and the stricture, dilated endoscopically (Figure 1B and 1C). While the stricture came back after 1.5 months and the operation aimed to remove the hyperplasia was needed to make orally take in possible.

Case #2 was diagnosed with middle third thoracic esophageal diverticulum which eventually caused the tracheoesophageal fistula at 27 cm from the incisor. The fistula measured as 3×3 mm on esophagoscopy. This patient was managed conservatively with a jejunostomy and enteral feeding. The fistula healed 14 days and he tolerated a liquid diet.

The TEFs in cases #3 to #9 suffered from complications following surgical treatment for esophageal cancer (Table 2). The onset of TEFs ranged from 8 to 40 days (mean: 16.13 days) following surgery. Four cases were managed conservatively (Case #4, #5, #6, and #9). Case #4 healed spontaneously in 36 days and case #5 in 83 days. The esophagography confirmed the healing by the image of no contrast agent coming out from esophagus to the airway. Case #6 healed spontaneously in 76 day. The healing, however, the TEF at the anastomosis in case #9, never recovered before his death 9.4 months after surgery. The overall spontaneous healing rate was 75%. Two patients received esophageal stenting as the first line treatment (case #3 and #10). The fistula in case #10 healed on the 19th days after stent placement without further complications. However, case #3 developed severe hyperplasia and stenosis in 5.3 months after esophageal stent placement (Figure 2A), similar to case #1. The stenosis was dilated and a second esophageal stent was placed (Figure 2B-D). However, the fistula never healed and subsequent surgical repair was performed in 2.5 months after the second stenting failing. Part of the esophageal wall was used as the patch flap to close the tracheal defect and the operation was successfully performed. The patient recovered well but slowly, and began to take in liquid food one month later. No complication was found and the patient was discharged in 1.5 months after the surgery. A tracheal stent was placed in case #7 (Figure 1D-F) due to severe dyspnea caused by airway stenosis adjacent to the fistula. The fistula healed in 30 days as confirmed with esophagoscopy. However, the patient suffered from severe coughing due to the irritations by the irritations by the

<table>
<thead>
<tr>
<th>Case</th>
<th>Causes</th>
<th>Pathological staging</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Left main bronchus tuberculosis</td>
<td>E</td>
<td>esophageal stent</td>
</tr>
<tr>
<td>#2</td>
<td>Middle third thoracic esophageal diverticulum</td>
<td>E</td>
<td>conservative</td>
</tr>
<tr>
<td>#3</td>
<td>Middle thoracic esophageal tuberculosis</td>
<td>1</td>
<td>esophageal stent + operation</td>
</tr>
<tr>
<td>#4</td>
<td>Middle third thoracic esophageal squamous cell carcinoma</td>
<td>T2N1M0 IIA</td>
<td>conservative</td>
</tr>
<tr>
<td>#5</td>
<td>Middle third thoracic esophageal squamous cell carcinoma</td>
<td>T2N1M0 IIA</td>
<td>conservative</td>
</tr>
<tr>
<td>#6</td>
<td>Lower third thoracic esophageal squamous cell carcinoma</td>
<td>T2N1M0 III</td>
<td>conservative</td>
</tr>
<tr>
<td>#7</td>
<td>Middle and lower third thoracic esophageal squamous cell carcinoma</td>
<td>T2N1M0 III</td>
<td>tracheal stent</td>
</tr>
<tr>
<td>#8</td>
<td>Middle third thoracic esophageal squamous cell carcinoma</td>
<td>T2N1M0 III</td>
<td>operation</td>
</tr>
<tr>
<td>#9</td>
<td>Middle third thoracic esophageal squamous cell carcinoma</td>
<td>T2N1M0 IIA</td>
<td>conservative</td>
</tr>
<tr>
<td>#10</td>
<td>Lower third thoracic esophageal squamous cell carcinoma</td>
<td>T2N1M0 IIIA</td>
<td>esophageal stent</td>
</tr>
<tr>
<td>#11</td>
<td>Middle third esophageal squamous cell carcinoma</td>
<td>T2N1M0 IIIA</td>
<td>esophageal stent</td>
</tr>
<tr>
<td>#12</td>
<td>Middle third thoracic esophageal squamous cell carcinoma</td>
<td>T2N1M0 IIIA</td>
<td>esophageal stent</td>
</tr>
</tbody>
</table>

#13 Right middle lower lobe squamous cell carcinoma | T2N2M0 IIIA | esophageal stent |
| #14 Right middle lower lobe squamous cell carcinoma | T2N2M0 IIIA | esophageal stent |
Managing benign tracheoesophageal fistulas

Figure 1. A. Stenosis below the esophageal sent; B. Cauterization of granulation tissues and dilatation of stenosis; C. Immediately after dilatation. The pictures of complications: D. Top of the tracheal stent; E. Distal extent of the tracheal stent; F. Hyperemia and edema of the tracheal mucosa at the distal end of the stent.

Table 2. Treatment and outcomes for post-esophagectomy fistulas

<table>
<thead>
<tr>
<th>Case</th>
<th>Initial surgery</th>
<th>TEF onset (days)</th>
<th>Outcome</th>
<th>Survival time (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#3</td>
<td>Vats lesion resection</td>
<td>12</td>
<td>unhealed</td>
<td>9.6+</td>
</tr>
<tr>
<td>#4</td>
<td>Ivor levis</td>
<td>18</td>
<td>36-days healed</td>
<td>13.0+</td>
</tr>
<tr>
<td>#5</td>
<td>Ivor levis</td>
<td>40</td>
<td>83-days healed</td>
<td>4.6+</td>
</tr>
<tr>
<td>#6</td>
<td>left thoracotomy</td>
<td>8</td>
<td>76-days healed</td>
<td>4.7+</td>
</tr>
<tr>
<td>#7</td>
<td>Ivor levis</td>
<td>8</td>
<td>30-days healed</td>
<td>6.0+</td>
</tr>
<tr>
<td>#8</td>
<td>Ivor levis</td>
<td>14</td>
<td>healed</td>
<td>7.4+</td>
</tr>
<tr>
<td>#9</td>
<td>left thoracotomy</td>
<td>13</td>
<td>unhealed</td>
<td>9.4+</td>
</tr>
<tr>
<td>#10</td>
<td>left thoracotomy</td>
<td>150</td>
<td>healed</td>
<td>19.0+</td>
</tr>
</tbody>
</table>

Cases #13 and #14 who underwent right middle and lower lobectomies for lung cancers followed by chemoradiation therapy. The patients then developed a tracheoesophageal fistula 1.0 and 3.0 months after the completion of chemoradiation, respectively, with no evidence of tumor recurrence. Under the display of Diatrizoate imaging, TEF was found between the middle third esophagus and right main bronchus. Both fistulae were treated with an esophageal stent. The whole course was similar with #11 for the patients #13 and #14 who died 1.7 and 1.0-month later because of the serious lung infection caused by the failure of the stenting.

Discussion

Although surgical interventions were generally recommended for the treatment of TEFs [9-11], in our cancer center, surgical approach was usually not accepted because most of the patients with benign TEFs had received the open thoracotomy, they usually refused to undergo the second procedure and also it was difficult for the surgeons to choose the tough and complicated second operation with high
Managing benign tracheoesophageal fistulas

risk. Under this circumstance, whether the stenting was a good choice? Was stenting really a fast and effective intervention in treating TEF? In this series, we reviewed our experience of managing TEFs of various causes with surgical or non-surgical approaches.

One of our patients with a TEF caused by tuberculosis in the left main stem bronchus was initially treated with esophageal stenting. However, the fistula never healed and subsequent esophageal stricture necessitated surgical intervention. TEFs caused by perforation of esophageal diverticula are rare. Case reports in the literature suggested that surgical intervention was necessary for cure [6]. In our case, however, the fistula was rather small and we elected to manage it conservatively with NPO and nutritional support. The fistula healed spontaneously within two weeks. The management of such fistulas should be individualized depending on the size, inflammation, presence of infection, and tissue quality.

The application of biological agent may be considered to facilitate the closure of benign TEFs [7]. When there is gastric necrosis and large fistula with mediastinal infection, urgent surgical debridement and esophageal diversion are life-saving procedures. Our results with esophageal stenting were disappointing. Only 1 of the recorded 7 TEFs following esophageal stenting healed without complications. Endoluminal stenting may provide temporary relief of symptoms of aspiration or dysphagia, and is generally indicated as a palliative measure for advanced esophageal cancers that are non-surgical candidates. They are however not effective to treat benign TEFs [8, 9]. In our data, four of seven patients died 1.7, 1.5, 1.0 and 0.4 months after the stenting. In terms of the much high short-term mortality, we therefore generally do not recommend esophageal stenting. While, what caused the astonishing high short-term mortality and what happened after the stent was placed? It really forced us pondering. By analyzing the history, we found that the patients usually suffered from the fever and cough even after stenting, and the problem was that the symptoms even worsened gradually. We presumed that since the TEF was accompanied with the inflammation, the inflammatory exudate drained to both airway and esophagus, while by closing the fistula in the esophageal wall using the stent, the inflammatory exudate draining to the esophagus would be blocked and as accumulating, more and more inflammatory exudate were drained to the airway and led to urgent respiratory failure. On the other hand, the oppression of the stent may also restrain the blood supply for the TEF inflammatory lesion and thus impeding the healing of the TEF. For the two who suffered from stenosis caused by the long-term stimulation of the stent, the onset of the symptomatic stenosis was 5.3 and 8 months respectively indicated that the hyperplasia usually came up after a long-term stimulation, whether we could create the novel stent which would be removed even after long time placement or we remove the

Figure 2. A. The first stent and jejunal feeding tube. B. Stenosis below the esophageal sent. C. Removed first stent. D. Gastric tube and the second stent implanted after first stent was removed. E. Unhealed TEF and the second placed stent. F. Removed stent. G. Part esophageal wall used to cover the TEF.
Managing benign tracheoesophageal fistulas

stent shortly after the symptom and the condition of the patient getting stable was still needed to be studied.

As a result, in our experience, we think conservative management was still firstly considered when TEF confirmed. While, if the symptoms caused by the TEF such as aspiration, malnutrition worsened continuously, the surgical intervention was recommended. The TEFs can be repaired by esophageal reconstruction and esophageal wall in situ as replacement of the posterior membranous wall of the trachea as we did in case one.

Similarly, tracheal stenting may be a reasonable option for malignant tracheoesophageal fistulae [10] but not for benign lesions. Tracheal stenting causes severe airway irritation, formation of granulation tissues, and secondary strictures [11] as demonstrated in our experience.

Esophageal stenting is commonly used to treat refractory postoperative anastomotic strictures. The risk of developing TEFs are, however, high especially for those who have undergone chemoradiation therapy [12]. These fistulas can be successfully treated with surgery with a reported mortality of 3.4-8.3% [13]. The two cases in this series declined surgical intervention and therefore received esophageal stenting. Both patients died shortly after due to failed closure of the fistulae. We agree with the literature that esophageal stenting is not indicated for treating postoperative anastomotic strictures due to the high incidence of complications and mortality. Endoscopic dilation is considered the preferred choice with minimal risk [14]. Surgical management is reserved for those who have failed repeated dilations.

In conclusion, treatment for TEFs needs to be individualized. Careful assessment of the fistula and the associated problems is crucial to determine the possibility of conservative management with spontaneous healing of the fistula. Surgical treatment remains the mainstay for the management of benign TEFs whereas esophageal stenting carries high complication rates and should only be considered as a palliative measure. Further clinical study should be focused on how to create a novel stent to resolve the issue of blocked drainage leading to the high short term mortality and how to avoid the granulation tissue hyperplasia caused by the long-term stimulating of the stent, otherwise, the application of the stent was not recommended.

Disclosure of conflict of interest

None.

Address correspondence to: Shidong Xu, Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Haping Road 150, Nan Gang District, Harbin 150086, China. Tel: +8645186298036; Fax: +8645186298666; E-mail: shidongxu@yeab.net

References

Managing benign tracheoesophageal fistulas

