Original Article
Efficacy of traditional Chinese medicine on sepsis: a systematic review and Meta-Analysis

Xiao Liang1*, Miao Zhou2*, Xin-Yu Ge3*, Cheng-Bao Li3, Shang-Ping Fang4, Ling Tang5, Dong-Hua Shao1, Guo Xu6

1Department of Anesthesiology, Affiliated People’s Hospital of Jiangsu University, Jiangsu, China; 2Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, China; 3Hebei North University School of Medicine, Hebei, China; 4Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, China; 5Department of Traditional Chinese Medicine, Changhai Hospital Second Military Medical University, Shanghai, China; 6Department of General Surgery, Huai’an First People’s Hospital, Nanjing Medical University, China. *Equal contributors.

Received August 24, 2015; Accepted October 25, 2015; Epub November 15, 2015; Published November 30, 2015

Abstract: Background: Traditional Chinese medicine (TCM) has been used for treatment of sepsis in China, but results still remain equivocal. To evaluate the safety and efficacy of TCM for sepsis, we conducted this Meta-analysis. Methods: Databases searched included randomized controlled trials (RCTs) published in PubMed, Embase and Cochrane Central Register of Controlled Trials (CENTRAL) (up to December 2014). The studies included used routine therapy treating sepsis in the control group and TCM was added on that basis in the experimental group. Methodological quality was assessed by Cochrane criteria for risk of bias. Results: Ten RCTs with 691 participants were identified and analyzed. In the meta-analysis, TCM plus routine therapy reduced the 28-day mortality compared to routine therapy alone, [RR = 0.67; 95% CI: 0.51~0.87; P = 0.002]; The decrease in length of ICU-stay [MD = -1.82; 95% CI: -2.60~ -1.04; P<0.00001]; Acute physiology and chronic health evaluation system (APACHE II) score [MD = -2.95; 95% CI: -3.99~ -1.91; P<0.00001]; Serum inflammatory factors concentration after treatment [SMD = -0.50; 95% CI: -0.68~ -0.33; P=0.00001], including TNF-α [SMD = -0.61; 95% CI: -0.85~ -0.38; P<0.00001] and IL-6 [SMD = -0.40; 95% CI: -0.75~ -0.04; P = 0.03] in subgroup analysis all had statistical significance. Conclusion: Addition of TCM has better effects in participants with sepsis, while more high-quality studies are needed to draw firm conclusion.

Keywords: Traditional Chinese medicine, sepsis, meta-analysis

Introduction

Sepsis is a systemic, deleterious host response to infection or injury leading to severe sepsis and septic shock, which is believed to be the major cause of death in ICUs [1, 2]. An epidemiologic study claimed an incidence of 37% for sepsis and 30% for severe sepsis in European ICUs [3], and the 1-year all-cause mortality of participants with severe sepsis and septic shock may be as high as 44% [4]. The pathogenic mechanism and physiologic changes are exceedingly complex, according to the pathogenesis of sepsis, in addition to the damage of pathogenic microorganisms and the toxin, disorder of the immune function also plays a key role in the development of sepsis. Pathogenic factors like infection, toxin and so on, produce a variety of cytokines in participants with sepsis, in which the most significant are TNF-α, IL-1, IL-6, IL-10 [5]. These inflammatory mediators cause serious consequences in the body, like, inflammation of endothelial cell, the dysfunction of blood coagulation and fibrinolysis, abnormal vascular tone and myocardial depression, etc. Nowadays, despite of the great progress in anti-infective therapy and the support of the organ function, mortality of severe sepsis is still up to 30%~70% [6].

Routine therapies including support of organ function and administration of intravenous flu-
ids, antibiotics, and oxygen is still nonspecific, limited [7]. Given the importance of inflammatory response in sepsis, new approaches targeting the host immune response may be efficacious in reaching a better outcome. Traditional Chinese medicines (TCM), for example, astragalus membranaceus, salvia miltiorrhiza, angelica sinensis, chuanxiong, have been found to have anti-inflammatory or immune modulation effects and help to regulate and improve the immune function [8]. Some mechanisms have been disclosed, which will discussed later. Researches [9-18] included in this meta-analysis using Chinese medicine as a part of treatment for sepsis showed that the treatment can improve the physical condition and prognosis of participants with sepsis.

To our knowledge, no quantitative analysis has been done for combination of related data. Therefore, in the present review, we evaluated findings from recent randomized controlled trials (RCTs) on the efficacy and safety of TCM for sepsis to determine whether it is beneficial to participants with sepsis.

Methods

Search strategy

We searched the electronic libraries including PubMed, Embase and Cochrane Central Register of Controlled Trials (CENTRAL) (up to December 2014) to make sure that the articles included might be provided with higher quality. All databases were searched without language limitation. Potentially relevant trials included the terms “traditional Chinese medicine” or “Chinese herbal medicine” or “Chinese traditional medicine”, “sepsis” or “pyaemia”, and “randomized control trial”. We retrieved the full texts to assess the studies for inclusion. Only data available in the full text were reviewed.

Inclusion and Exclusion criteria

Studies had to satisfy all the following criteria for inclusion into the review: (1) trial: randomized controlled trials (RCTs); (2) participants: adults and diagnosed as sepsis; (3) interventions: TCM plus routine therapy versus the same routine therapy alone, or TCM alone versus routine therapy; (4) outcome: appropriate and normative outcome measures, relevant data should be available in the full text. Studies were excluded if they conformed the following criteria: (1) trial: non-randomized controlled trials (NRCTs), animal experiments, review articles; (2) participants: children or participants with other diseases; (3) interventions: TCM plus routine therapy versus the third treatment; (4) outcome: outcome measures were not appropriate, relevant data could not be obtained from the original author. (5) duplicated publications. The eligibility of included studies was assessed by two reviewers independently. Any disagreement was solved by discussion between the two reviewers, and finding a third reviewer for judgment if necessary.

Outcome measurements and data extraction

Two reviewers (L.X. and Z.M.) independently extracted the main outcome data to evaluate the difference between the experimental group (TCM plus routine therapy) and control group (routine therapy). The outcome measurements are as follows: (i) Primary outcomes: 28-day mortality; (ii) Secondary outcomes: length of ICU stay, APACHE II score after treatment, the concentration of serum inflammatory factors (TNF-α and IL-6) after treatment. And extraction forms (Tables 1, 2) were specially made for baseline assessment. Items in the forms included (1) characteristics of the studies (author, year of publication, country of study, journal, type of the study); (2) participants (sample size, age and gender, APACHE II score, infectious status); (3) interventions (experimental and control group, duration of treatment, route of TCM); (4) outcome.

Quality assessment

The methodological quality was assessed according to the guidelines recommended by the Cochrane Collaboration [19] by two reviewers (G.X.Y. and L.C.B.) independently. Six categories (randomization and sequence generation, allocation concealment, blinding method, incomplete outcome data, selective outcome reporting, and other sources of bias, the first three considered as “key domains”) were evaluated, each one summarized into three levels: low risk, unclear risk, and high risk. The risk of bias of a particular study was assessed according to the levels of the three key domains: LOW (low risk of bias for all key domains); UNCLEAR (unclear risk of bias for one or more key
TCM for sepsis

Table 1. Characteristics of included RCTs (part A)

<table>
<thead>
<tr>
<th>Study</th>
<th>Gender</th>
<th>Age</th>
<th>APACHE II score</th>
<th>Infectious status (number of patients)</th>
<th>Duration of treatment</th>
<th>Route of TCM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TCM+RT</td>
<td>RT</td>
<td>TCM+RT</td>
<td>RT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>male</td>
<td>female</td>
<td>male</td>
<td>female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huang RL [9] (2014)</td>
<td>13</td>
<td>7</td>
<td>12</td>
<td>8</td>
<td>54.7±14.9</td>
<td>55.7±17.3</td>
</tr>
<tr>
<td>Shao M [10] (2011)</td>
<td>21</td>
<td>18</td>
<td>12</td>
<td>13</td>
<td>55.7±15.3</td>
<td>56.2±15.5</td>
</tr>
<tr>
<td>Wang B [12] (2011)</td>
<td>22</td>
<td>10</td>
<td>21</td>
<td>11</td>
<td>57.6±8.3</td>
<td>63.1±7.9</td>
</tr>
<tr>
<td>Zhang CH [13] (2011)</td>
<td>15</td>
<td>7</td>
<td>15</td>
<td>8</td>
<td>58.4±16.3</td>
<td>60.1±18.6</td>
</tr>
<tr>
<td>Wang CX [14] (2011)</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>59.88±10.25</td>
<td>59.50±11.85</td>
</tr>
<tr>
<td>Jiang RL [15] (2009)</td>
<td>9</td>
<td>18</td>
<td>18</td>
<td>7</td>
<td>65.4±12.1</td>
<td>68.8±12.9</td>
</tr>
<tr>
<td>Qiu ZL [16] (2012)</td>
<td>20</td>
<td>16</td>
<td>18</td>
<td>14</td>
<td>49.3±15.5</td>
<td>50.5±17.2</td>
</tr>
<tr>
<td>Zhang SL [17] (2010)</td>
<td>9</td>
<td>7</td>
<td>12</td>
<td>10</td>
<td>60.9±17.5</td>
<td>58.7±16.8</td>
</tr>
</tbody>
</table>
TCM for sepsis

Table 2. Characteristics of included RCTs (part B)

<table>
<thead>
<tr>
<th>Study</th>
<th>Type of study</th>
<th>Interventions (control group)</th>
<th>Interventions (experimental group)</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huang RL [9] (2014)</td>
<td>RCT</td>
<td>routine therapy (referred to 2008 SSC guidelines)</td>
<td>routine therapy; Sini Decoction (ripe aconite root, dried ginger, honey-fried licorice root)</td>
<td>ACTH stimulating test; 28-day mortality; APACHE II score; 3-day shock recovery rate</td>
</tr>
<tr>
<td>Shao M [10] (2011)</td>
<td>RCT</td>
<td>routine therapy (referred to 2004 SSC guidelines, bundle therapy)</td>
<td>routine therapy; Xuebijing injection (extractive of safflower, red peony root, rhizoma chinensis, salvia, angelica)</td>
<td>Expression rate of Th17 and CD4+CD25+Treg; 28-day mortality; ICU stay; APACHE II score; Serum inflammatory factors concentration</td>
</tr>
<tr>
<td>Su YL [11] (2008)</td>
<td>RCT</td>
<td>routine therapy (referred to 2004 SSC guidelines)</td>
<td>routine therapy; Qishen huoxue granule (astragalus membranaceus, salvia miltiorrhiza, flos carthami, angelica sinesis, chinensis, etc.)</td>
<td>28-day mortality; ICU stay; Marshall score; APACHE II score; Serum inflammatory factors concentration</td>
</tr>
<tr>
<td>Wang B [12] (2011)</td>
<td>RCT</td>
<td>routine therapy</td>
<td>routine therapy; Modified Liang-Ge San (fructus forsythiae, scutellaria baicalensis, gardenia, iohatherum gracile, rheum officinale, mint, mirabilite, liquorice, radix scrophulariae, salvia miltiorrhiza, radix ophiopogonis, American ginseng)</td>
<td>Platelet parameters/activation; platelet TLR4 expression; intensity of inflammatory response; rate of bleeding; 28-day mortality; ICU stay; APACHE II score; TNF-α concentration</td>
</tr>
<tr>
<td>Zhang CH [13] (2011)</td>
<td>RCT</td>
<td>routine therapy</td>
<td>routine therapy; Hengyan medicinal recipe (bombyx batryticatus, periostracum cicada, turmeric, rheum officinale, astragalus membranaceus, radix ophiopogonis, red ginseng, cortex moutan, peach seed, flos carthami, etc.)</td>
<td>Number of bowel movements; levels of CD3+, CD4+, CD8+ T cell; APACHE II score; Serum inflammatory factors concentration</td>
</tr>
<tr>
<td>Wang CX [14] (2011)</td>
<td>RCT</td>
<td>routine therapy (fluid resuscitation)</td>
<td>routine therapy; Modified Qianyang Pellet (fructus amomi, monkshood, tortoise plastron, rhizoma zingiberis, ephedra, honey-fried licorice root)</td>
<td>Extravascular lung water parameters; oxygenation index; 28-day mortality;</td>
</tr>
<tr>
<td>Jiang RL [15] (2009)</td>
<td>RCT</td>
<td>routine therapy (referred to 2004 SSC guidelines)</td>
<td>routine therapy; Shenfu injection (extractive of red ginseng and black Fupian)</td>
<td>DO2, VO2, ERO2, lactate clearance rate; 28-day mortality</td>
</tr>
<tr>
<td>Qiu ZL [16] (2012)</td>
<td>RCT</td>
<td>routine therapy (referred to 2008 SSC guidelines)</td>
<td>routine therapy; Shenfu injection (red ginseng, extractive of black Fupian)</td>
<td>28-day mortality; Marshall score; APACHE II score; Serum inflammatory factors concentration</td>
</tr>
<tr>
<td>Zhang SL [17] (2010)</td>
<td>RCT</td>
<td>routine therapy</td>
<td>routine therapy; Fufang qingxia Decoction (rheum officinale, magnolia obvata, immature bitter orange, mirabilite, fructus forsythiae, dandelion, double blossom, gardenia, Cortex Moutan)</td>
<td>TNF-αconcentration; expression of TNF-α mRNA</td>
</tr>
<tr>
<td>Gao ZL [18] (2012)</td>
<td>RCT</td>
<td>routine therapy (anti-infection, nutrition support, glucose control with insulin pump)</td>
<td>routine therapy; Shennai injection (extractive of red ginseng and ophiopogon), sulfotanshinone sodium injection (extractive of Salviae Miltiorrhizae)</td>
<td>serum levels of CRP, TNF-α, IL-1, and IL-6; the HLA-DR expression of the peripheral monocytes; 28-day mortality; APACHE II score</td>
</tr>
</tbody>
</table>

*SSC: Surviving Sepsis Campaign; *No description about routine therapy in the study.
All included ten studies were single center RCTs conducted in China, involving 691 participants. All the studies were similar at baseline and low quality researches. The Cochrane risk of bias was assessed in Figure 2. Eight studies [9, 11-16, 18] described the random method, while two of the studies [14, 18] were not completely random. Only one study [9] declared the use of single blind method. There were no descriptions about concealment of allocation, withdrawals or dropouts.

28-day mortality

Eight studies [9-12, 14-16, 18] reported the 28-day mortality, data were extracted for meta-analysis. In the eight studies, containing 589 participants, 307 were assigned to the experimental group (TCM plus RT), whereas 281 participants were assigned to the control group.
There was no significant heterogeneity between studies (P = 0.99, I² = 0%), thus the fixed-effect model method was used. The result showed that TCM reduced the 28-day mortality compared to RT (RR = 0.67; 95% CI, 0.51~0.87; P = 0.002) (Figure 3).

Length of ICU stay

Three studies [10-12] reported the length of ICU stay, data were extracted for meta-analysis. In the three studies, containing 295 participants, 153 were assigned to the experimental group (TCM+RT), whereas 142 participants were assigned to the control group (RT). There was no significant heterogeneity between studies (P = 0.41, I² = 0%), thus the fixed-effect model method was used. The result showed that TCM reduced the length of ICU stay compared to RT (MD = -1.82; 95% CI, -2.60~1.04; P<0.00001) (Figure 4).

APACHE II score after treatment

Six studies [10-13, 16, 18] reported the APACHEII score after treatment, data were extracted for meta-analysis. In the six studies, containing 493 participants, 256 were assigned to the experimental group (TCM+RT), whereas 237 participants were assigned to the control group (RT). There was no significant heterogeneity between studies (P = 0.30, I² = 18%), thus the fixed-effect model method was used. The result showed that TCM reduced the APACHE II score after treatment compared to RT (MD = -2.95; 95% CI, -3.99~1.91; P<0.00001) (Figure 5).

Serum inflammatory factors concentration after treatment

Six studies [11-13, 16-18] reported the serum inflammatory factors concentration after treat-
ment, data were extracted for meta-analysis. One study [18] was excluded for the heterogeneity it may bring. In the five studies left, containing 529 participants, 262 were assigned to the experimental group (TCM+RT), whereas 267 participants were assigned to the control group (RT). There was no significant heterogeneity between studies (P = 0.5, I² = 0%), thus the fixed-effect model method was used. The result showed that TCM reduced the serum inflammatory factors concentration after treatment compared to RT (SMD = -0.50; 95% CI, -0.68~-0.33; P<0.00001) (Figure 6).

Of these five studies [11-13, 16, 17], four studies [11-13, 17] reported the serum TNF-α concentration after treatment. 144 of 294 participants assigned to the experimental group (CM) compared with 150 of 294 participants assigned to the control group (WM) (SMD = -0.61; 95% CI, -0.85~-0.38; P<0.00001), with no significant heterogeneity between studies (P = 0.84, I² = 0%) (Figure 6).

Of these five studies [11-13, 16, 17], three studies [11, 13, 16] reported the serum IL-6 concentration after treatment. Data in one study [11] were not used because it used medians as assessment value, while means and SD values were used in others. 118 of 235 participants assigned to the experimental group (TCM+RT) compared with 117 of 235 participants assigned to the control group (RT) (SMD = -0.37; 95% CI, -0.63~-0.11; P = 0.005), with no significant heterogeneity between studies (P = 0.20, I² = 39%) (Figure 6).

Publication bias

All trials claimed to have randomly assigned participants into different groups, but the details of randomization and concealment methods were rare. The TCM approaches were somewhat heterogeneous because different Chinese medicines were used in different researches. Hence, most of the trails included in this review had a risk of bias. While, there was no evidence of funnel plot asymmetry according to Begg’s test (P = 0.266).

Sensitivity analysis

Pre-specified sensitivity analyses were conducted for the comparison of 28-day mortality (Table 3). The RR of respond was relatively stable when different effect model were used, and bias of trails were moderate. While different routes of administration led to different results...
Discussion

This meta-analysis has demonstrated that TCM plus routine therapy were more effective than routine therapy alone for the treatment of sepsis. Reduction in 28-day mortality, length of ICU stay and APACHE II score after treatment were all of statistics significance. Serum inflammatory factors concentration after treatment including TNF-α and IL-6 were assessed and significant decrease was found. In the sensitivity analyses for 28-day mortality, the RR of respond was relatively stable, and TCM administration via vianasogastric tube or oral or rectal (P = 0.008) seems to be more effective compared with intravenous drip (P = 0.11). The different results were probably were associated with the gut, an important immunologically active organ which plays an important role in the development of sepsis. The route of administration via oral or rectal was likely to have a directly effect on intestinal and resulted in better intestinal protection.

Sepsis is a life threatening illness which refers to the systemic inflammatory response following micro-bial infection [20]. The early phase of sepsis is generally believed to result from the uncontrolled production of proinflammatory mediators, the so-called “cytokine storm” [21]. Inflammatory cytokines play a very important role in sepsis including TNF-α, IL-1, IL-6, IL-10. In our review, serum inflammatory factors (TNF-α and IL-6) concentration after treatment was decreased and so was the 28-day mortality. TNF was found to be a potent stimulator of the activation of macrophages/monocytes and NK cells, it also induces the production of selectins, platelet activating factor, and intracellular adhesion molecules (ICAM), which mediate neutrophil migration into tissues [22]. Some researches [23, 24] also found that high serum TNF-α levels associated positively with the severity of disease and fatal outcome. As for IL-6, a research found that the elevated serum IL-6 levels are associated with increased mortality in participants with intraabdominal sepsis [25]. While, contrary to our study, Florence Riche with coauthors found that high serum TNF levels were correlated with increased survival in abdominal septic shock [26]. Most researchers believe that the intensity of immunoinflammatory response influences the outcome of sepsis and if this reaction is uncontrolled, it can lead to the MODS [27]. Maybe we can not deem that the reason for our delighted outcomes was reducing the inflammatory cytokine, but regulating it to a more appropriate level. Although the long-term effects were unknown, we can expect a better outcome as for the current data.
The possible mechanism of Chinese medicine in treating sepsis are as follows: (1) anti-inflammation and immunoregulation [28]; (2) toxic free radicals clearing [8, 29]; (3) circulation improvement; (4) intestinal protection. Some kinds of traditional Chinese medicine have been deeply researched, for example, the rhubarb has been reported to have an antiplatelet aggregation activity, antioxidant activity, and vasorelaxant effects [30], and the detailed mechanisms were reported in several researches [31-33]. Besides, some other effects have been found, for example, preventing TNF-α oversecretion [34, 35], promoting gastrointestinal electric activity and intestinal peristalsis, promoting the endotoxin eduction and decreasing the bacteria translocation, improving micro-circulation [36, 37]. Another commonly used Chinese medicine, Salvia miltiorrhiza, was discussed and reported that different compounds extracted from the medicine have specific activity against leukocyte adhesion, platelet aggregation, the release of oxygen radicals and endothelial cell injury, among other effects associated with the pathogenesis of septic shock, and the possible mechanisms were also disclosed [30]. Salvia miltiorrhiza, another well-researched Chinese medicine, was thought to play key roles in the pathogenesis of septic shock in reducing neutrophil degranulation, oversecretion of prostaglandins (PGs), and the induction of nitric oxide synthase [30]. Meanwhile, two proteins with antifungal activities were isolated from Salvia miltiorrhiza recently [38].

This analysis provides a current assessment of the effect of TCM for participants with sepsis. In our analysis, usage of TCM was preferable as a treatment for sepsis in 28-day mortality, length of ICU-stay and APACHE II score after treatment. What’s more, no apparent adverse effects were found in all the studies included. We analyzed the change of serum inflammatory factors concentration after treatment which may be a potential mechanism of traditional Chinese medicine for sepsis. We also conducted sensitivity analyses according to effect models, risk of bias of included trials, route of administration to assess whether any of these differences affected overall efficacy, and the probability of different routes of administration leading to different results was found and discussed. Other strengths of our review include a precise clinical question restricted to participants with sepsis rather than all critically ill participants, and each study we included mentioned its diagnosis explicitly. Moreover, all these studies within groups were in the absence of heterogeneous which increased the accuracy of outcomes.

While the limitations of this review, the same with any other meta-analysis, derive from the quality and reporting of the studies included. All the studies were conducted in mainland China, and the source of experimental data is quite narrow. The protocols of the included studies were not available, we don’t know the potential selective report bias. And there were no details about concealment of allocation, blind method, withdrawals or dropouts in these RCTs, which means potential risk of bias. The small number of studies included decreased the reliability and lack of long-term follow-up prevented us from analysing the long term effects.

In conclusion, this meta-analysis suggests that addition of TCM may be a better solution for sepsis compared with using routine therapy.
alone, especially in a developing country like China, because most TCM are cheap and accessible, which may largely reduce the expenditure for the participants with sepsis. Despite of the gratified results, more high-quality and large-scale trials are expected to confirm these findings and intensive studies are still needed.

Acknowledgements

The study was supported by the funds of Shanghai Chen-Guang program (10CG40), Shanghai Health Bureau (XYQ2011022), National Natural Science Foundation of China (30772092), National Science Foundation of Shanghai (14ZR1413700) and Science and technology program (social development) of Zhenjiang (SH2014087) and (SH2015039).

Disclosure of conflict of interest

None.

Address correspondence to: Guo Xu, Department of General Surgery, Huaian First People's Hospital, Nanjing Medical University, Huaian, Jiangsu, China. Tel: 86-517-84922412; Fax: 86-517-80872266; E-mail: xg1167@163.com; Dong-Hua Shao, Department of Anesthesiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China. Tel: 86-511-85231018; Fax: 86-511-85234387; E-mail: 13805281211@163.com; Ling Tang, Department of Traditional Chinese Medicine, Zhaihong Hospital Second Medical University, Shanghai, China. Tel: 86-21-31166666; Fax: 86-21-31161111; E-mail: tanglingyuyz@126.com

Reference

20033

[38] Lam SK and Ng TB. Isolation of a novel thermolabile heterodimeric ribonuclease with antifungal and antiproliferative activities from roots of the sanchi ginseng Panax notoginseng. Biochem Biophys Res Commun 2001; 285: 419-423.