Original Article

Icariin has synergistic effects with methylprednisolone to ameliorate EAE via modulating HPA function, promoting anti-inflammatory and anti-apoptotic effects

Zhisheng Wei1*, Xuemei Deng2*, Mingfan Hong1, Quanxi Su1, Aiqun Liu1, Yeqing Huang1, Qingyun Yu1, Zhongxing Peng1

1Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, Guangzhou 510080, People’s Republic of China; 2Department of Neurology, The Third Hospital of Wuhan, No. 241 Peng Liuyang Road, Wuhan 430060, People’s Republic of China. *Equal contributors.

Received August 19, 2015; Accepted November 12, 2015; Epub November 15, 2015; Published November 30, 2015

Abstract: Background: High-dose methylprednisolone (MP) is a clinically recommended therapeutic regimen for Multiple Sclerosis (MS), whereas some dreadful complications induced by it remain inevitable. Studies implied that estrogen might play neuroprotective and anti-inflammatory roles in EAE and MS and promote glucocorticoid efficacy. Icariin (ICA), a primary active component of Epimedium extracts, also possesses neuroprotective and estrogen-like effects with less adverse complication than estrogen. However, rare study focuses ICA’s effects on MS or EAE. Objective: Our purpose is to determine whether ICA has synergistic effects with MP in treating EAE and explore the possible mechanisms. Methods: C57BL/6 EAE mice were received different dose of ICA combined with MP and single MP treatment. Then, the clinical scores and serum Interleukin-17 (IL-17), Corticosterone (CORT), Adrenocorticotropic Hormone (ACTH) concentrations were analyzed. Western blot and Flow Cytometry were used to investigate the expression of glucocorticoid receptor (GR) and cell apoptosis. Results: ICA has cooperative effects with MP in decreasing serum IL-17 and CORT concentrations, up-regulating the expression of GR in cerebral white matter and attenuating the cell apoptosis in spinal cord, especially high-dose ICA combined with MP. Conclusion: ICA has synergistic effects with MP to ameliorate EAE via modulating hypothalamic-pituitary-adrenal (HPA) function, promoting anti-inflammatory and anti-apoptotic effects. ICA could be considered as a promising therapeutic option for MS.

Keywords: Icariin, methylprednisolone, experimental autoimmune encephalomyelitis, multiple sclerosis, hypothalamic-pituitary-adrenal

Introduction

Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). At present, corticosteroid has been considered as a successful agent for the therapy of relapses, exacerbations or attacks of MS [1]. Administration of high dose methylprednisolone (MP) is a clinically recommended therapeutic regimen. Previously, our study demonstrated that increase the dosage of MP may not improve efficacy in experimental autoimmune encephalomyelitis (EAE) rats [2]. In the light of high dose or long term corticosteroids treatment may lead to severe complications or glucocorticoid (GC) resistance [3], researchers are fascinated to explore another approach which could decrease the dosage of corticosteroid, or as an alternative for corticosteroid.

Abundant studies have confirmed that estrogens exert many effects on immunomodulation which could down-regulate the level of cytokines TNF-α, IFN-γ, IL-2 and up-regulate IL-4, IL-10 in EAE or MS patients [4, 5]. EAE animals treated with estrogens experienced significantly delayed onset and decreased disease severity [6]. Thus, estrogens may play neuroprotective and anti-inflammatory roles in EAE and MS. Additionally, evidence also indicated that estro-
Synergistic effects of icariin with methylprednisolone in ameliorating EAE

Materials and methods

Experimental animals

C57BL/6 mice (female, 6-9 weeks old, weight 18 to 22 g) were purchased from Guangdong Medical Laboratory Animal Center (License No. 44007200003436). They had free access to food and water. All animals were treated in accordance with institutional animal ethics guidelines and approval.

EAE induction

The method to induce EAE was applied according to the published protocol [19]. C57BL/6 female mice were induced by immunization with an emulsion of MOG35-55 (Tocris Bioscience) in complete Freund’s adjuvant (CFA) (Sigma-Aldrich), followed by administration of pertussis toxin (PTX) (Enzo Life Sciences) in Phosphate Buffered Saline (PBS), first on the day of immunization and then again the following day. Weight and neurological signs were evaluated daily. Neurological signs were scored as following criteria [20]: 0, no detectable signs of EAE; 0.5, limp distal tail; 1, complete limp tail; 1.5, limp tail and hind limb weakness; 2, unilateral partial hind limb paralysis; 2.5, bilateral partial hind limb paralysis; 3, complete bilateral hind limb paralysis; 3.5, complete hind limb paralysis and unilateral forelimb paralysis; 4, total paralysis of both forelimbs and hind limbs; 5, death.

Histological identification of EAE

The peak onset time of EAE was 12 days after immunization when three mice were chosen randomly to be identified by pathological staining. Anesthetized mice were fixed by cardiac perfusion with 4% paraformaldehyde in PBS over 15 min. Spinal cords were postfixed overnight at 4°C and embedded in paraffin. Paraffin sections were cut at 5 um and stained with hematoxylin and eosin (HE) to assess inflammation, with solochrome cyanine staining for demyelination.

Experimental groups and treatment protocols

EAE mice were divided randomly into five groups named group A, B, C, D, M, six normal mice were fed at the same condition as group N, as described in Table 1. ICA (Sigma-Aldrich) or carboxymethylcellulose (CMC) (Sigma-Aldrich) was given by gavage, MP (Pfizer Manufacturing Be-
Synergistic effects of icariin with methylprednisolone in ameliorating EAE

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Treatment</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6</td>
<td>high-dose ICA combined with MP</td>
<td>ICA 300 mg/kgd</td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>mid-dose ICA combined with MP</td>
<td>ICA 150 mg/kgd</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>low-dose ICA combined with MP</td>
<td>ICA 75 mg/kgd</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>placebo combined with MP</td>
<td>CMC 0.3 ml</td>
</tr>
<tr>
<td>M</td>
<td>7</td>
<td>placebo</td>
<td>CMC 0.3 ml</td>
</tr>
<tr>
<td>N</td>
<td>6</td>
<td>placebo</td>
<td>CMC 0.3 ml</td>
</tr>
</tbody>
</table>


Serology test for IL-17, CORT, ACTH

The mice were sacrificed 6 days after treatment and the sera were abstracted at the same time point. Serum concentrations of interleukin-17 (IL-17) was assayed by specific Enzyme-linked immunosorbent assay (ELISA) Kit (Wuhan Boster Biological Technology Co., Ltd, China); Serum CORT and Adrenocorticotropic Hormone (ACTH) were measured using specific radioimmunoassay kits (Sino-UK Institute of Biological Technology, Beijing, China) and GC-911γ-ray radioactive immunity analysis instrument (USTC Holdings Co., Ltd, Hefei, China).

Western blot analysis GR in cerebral white matter

Cerebral white matter in lateral ventricle was dissected, the corpus callosum and internal capsule tissues were collected and lysed in a RIPA buffer (Beyotime Institute of Biotechnology, Haimen, Jiangsu, China) containing protease inhibitors. Protein concentration was determined by BCA protein assay kit (Thermo Scientific, Pittsburgh, PA, USA). Protein samples were separated by 10% sodium dodecyl sulfatepolyamide gel electrophoresis (SDS-PAGE).
Synergistic effects of icariin with methylprednisolone in ameliorating EAE

Results

Clinical and pathological manifestations of EAE

The onset of EAE in mice was 9 days after immunization. The first sign of illness was decreased appetite and weight loss. Afterward, the mice presented with distal tail weakness, which gradually developed into complete tail paralysis and various degrees of limb paralysis. Neurological signs developed at 11-12 days. Some EAE mice deteriorated quickly and died of severe illness. The weight loss of EAE mice was recovery in different degree followed by ICA and MP treatment, particularly by the treatment of high-dose ICA combined with MP (group A) (Figure 1A).

In the HE-stained EAE spinal cord, perivascular and parenchymal mononuclear cell infiltrates were observed in the gray and white matter, and a number of perivascular cuffs were seen (Figure 2A). Solochrome cyanine staining showed various degrees of demyelination in EAE mice (Figure 2B).

Comparison of clinical scores

The neurological signs were ameliorated in different degree after ICA or MP treatment. But...
Synergistic effects of icariin with methylprednisolone in ameliorating EAE

Only treatment with high-dose ICA combined with MP (group A) showed a significantly reduced mean clinical score (Table 2; Figure 1B). There were no significant differences of clinical scores between before and after treatment in other groups. These data indicated that high-dose ICA combined with MP may be superior to mid-dose or low-dose of ICA combined with MP in clinical efficacy.

Comparison of IL-17, CORT, ACTH

In the model control group, concentrations of IL-17 and CORT were apparently higher than that in the normal control group (P<0.01). Mice treated with MP exhibited significantly reduced IL-17 and CORT concentrations in comparison to the model control group (P<0.01). In contrast to single MP treatment, administration of high-dose ICA combined with MP further decreased the levels of IL-17, while mid-dose and low-dose of ICA group showed similar levels to single MP group (Figure 3A). High-dose and low-dose ICA group also showed significantly lower levels of CORT compared with single MP group, whereas high-dose ICA reduced CORT levels markedly as compared to low-dose of ICA group. There was no significant difference in CORT levels between mid-dose of ICA group and model control group (Figure 3B). In view of ACTH concentrations, the levels in single MP group elevated remarkably in comparison with that in other groups. Treatment with different dose of ICA combined with MP produced unchanged ACTH concentration compared to the model control group and normal control group (Figure 3C).

Expression of GR

Densitometric analysis of Western blot revealed that the GR levels decreased in model control group in comparison to normal control group. Treatment with single MP triggered a significant increase in GR levels compared with model control group. It was surged further by the administration of different dose of ICA combined with MP. Notably, treatment with high-dose ICA elicited the elevation more remarkably (Figure 4).
Synergistic effects of icariin with methylprednisolone in ameliorating EAE

Our results also found that IL-17 was enhanced in the serum of EAE mice, which could be down-regulated by the treatment of MP and decreased deeply by combining with ICA in a dose-dependent manner. Thus, it suggested that ICA has synergistic effect with MP in down-regulating IL-17, especially high-dose ICA.

Nowadays, increasing studies in MS and its animal models have shown disruptions in the HPA axis. Decreased HPA function may play an important role in the increased susceptibility and severity of MS [27, 28]. Hyper- and hypoaactivity of the HPA axis have been described to be associated with more severe courses [29]. ACTH is an important hormone of HPA axis plays a key role in regulating adrenal cortex to release CORT. In animals, CORT is the primary GC whose level responses to the activity of HPA axis. There is clear evidence that disruption of HPA axis results in up-regulated CORT with the purpose of constraining the progression of inflammatory state in the occurrence of EAE. However, over-expressed CORT may lead to structural and functional changes in brain regions including hippocampus and induce cell apoptosis.

Flow cytometry assay with Annexin V/PI double staining showed that the apoptotic rate increased to 37.33±3.308% in model control group, while, the rates of normal control group was only 4.15±0.636%. Statistic analyses revealed that treatment with different dose of ICA combined with MP or single MP declined the apoptotic rate markedly in comparison with that in model control group, particularly in high-dose ICA group, the rate decreased more significant than the other treatment groups (Figure 5).

Discussion

The effects of IL-17 on the progression of MS have been concerned greatly at present. IL-17 produced mainly by Th-17 cells which is involved in the development of many autoimmune diseases. It was found that IL-17 mRNA was augmented in the blood and CSF of MS patients [21], and the increased production of IL-17 was detected in the brain during early EAE [22]. The development of EAE was markedly suppressed in IL-17 gene knock-out mice [23]. Thereby, these observations suggest that IL-17 is crucial for the pathogenesis of MS and EAE. Currently, ICA has been reported to have potential anti-inflammatory activities and associated with immunomodulation, including IL-17. Studies illustrated that ICA could decrease Th17 cells and suppress the production of IL-17 in mice of collagen-induced arthritis [24]. ICA also triggered a significant reduction in IL-6, IL-17 and TGF-β level in bronchoalveolar lavage fluids cell [25]. Moreover, recent study demonstrated that ICA ameliorated EAE and inhibited Th1 and Th17 cell differentiation by the modulation of dendritic cells [26]. Hence, it implies that ICA has therapeutic potential for neuroinflammatory diseases via the regulation of IL-17. Our results also found that IL-17 was enhanced in the serum of EAE mice, which could be down-regulated by the treatment of MP and decreased deeply by combining with ICA in a dose-dependent manner. Thus, it suggested that ICA has synergistic effect with MP in down-regulating IL-17, especially high-dose ICA.

Figure 4. Densitometric analysis of GR expressions. *P<0.01, vs. normal control group; #P<0.05, vs. model control group; ▼P<0.01, vs. group D (one-way ANOVA followed by the least-significant difference-multiple comparison test).
emotional or cognitive deficits, even exacerbate the disease [30, 31]. In the present study, the serum CORT level was also elevated in EAE mice, while ACTH was unchanged. After given exogenous GC, the elevated CORT was attenuated by negative feedback regulation and further decreased by the treatment of ICA combined with MP, whereas ACTH remained unaltered. As a result, it suggests that ICA has cooperative effect with MP in inhibiting CORT to regulate HPA axis function. Nevertheless, we didn’t found ICA could dose-dependently downregulate CORT and affect serum ACTH level. Likewise, other studies also demonstrated that administration of ICA could reverse the abnormal increases of serum CORT levels and had no

Figure 5. The apoptotic rate in spinal cord among different group analyzed by Flow cytometry assay. *P<0.01, vs. normal control group; #P<0.05, vs. model control group; *P<0.05, vs. group D; #P<0.05, vs. group B, C, D (one-way ANOVA followed by the least-significant difference-multiple comparison test).
appreciable effect on ACTH [32-34]. Thus, we inferred that it probably caused by other factors which may contribute to the modulation of CORT and ACTH since the underlying mechanisms in ICA regulating HPA axis remain elusive.

Recently, much work has been reported that ICA induced GR modulation. Studies revealed that ICA significantly increased GR mRNA and protein expression in the lungs of mice exposed to smoke, stress and allergen [32, 35]. ICA also attenuated social defeat-induced down-regulation of GR in the liver and hippocampus of mice model for depression [36, 37]. Similarly, our data also manifested that administration of ICA combined with MP further promoted the expression of GR in cerebral white matter of EAE mice in contrast to single MP treatment, especially high-dose ICA. Accordingly, we speculated that ICA has synergistic effect with MP to restore EAE-induced down-regulation of GR and normalize GR function, so as to improve the anti-inflammatory activities of GC.

Additionally, previous studies indicated that ICA possesses cardioprotective and anti-osteoporotic efficacy, which is associated with its anti-oxidative and anti-apoptotic effect [38, 39]. In our work, we found that ICA combined with MP attenuated the apoptosis of spinal cord neuron more significant than single MP treatment. It suggests that the cooperative activity of ICA with MP in anti-apoptosis greatly contribute to the recovery of EAE.

In conclusion, ICA has synergistic effects with MP in decreasing serum IL-17 and CORT concentrations, modulating HPA function and up-regulating the expression of GR in cerebral white matter, enhancing the anti-inflammatory and anti-apoptotic effects of MP in ameliorating EAE. As a major constituent of flavonoids from the Chinese medicinal herb Epimedium brevicornum, ICA exerts neuroregulatory and neuroprotective activities as well as estrogen, but less adverse complication than estrogen, thus it is considered as a potential therapy against neuroinflammatory diseases. Admittedly, MP is a pervasively applied first-line drug for MS, whereas some dreadful complications induced by it remain inevitable. The synergistic effects of ICA combined with MP will make it feasible to shrink MP dosage and reduce the side effects of corticosteroid such as GC-induced osteoporosis [40]. Hence, ICA may be considered as a promising therapeutic option for MS.

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 81173418).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Mingfan Hong, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, Guangzhou 510080, China. Tel: +86 20 6133 7324; Fax: +86 20 6132 1827; E-mail: hmf9001@163.com

References

[7] Jasnow AM, Schulkin J and Pfaff DW. Estrogen facilitates fear conditioning and increases corticotropin-releasing hormone mRNA expres-


Synergistic effects of icariin with methylprednisolone in ameliorating EAE


[34] Pan Y, Kong LD, Li YC, Xia X, Kung FX. Icariin from Epimedium brevicornum attenuates chronic mild stress-induced behavioral and neuroendocrinological alterations in male Wistar rats. Pharmacol Biochem Behav 2007; 87: 130-140.


