Original Article
Evaluation of neck circumference as a predictor of central obesity and insulin resistance in Chinese adults

Xuhong Wang¹², Ning Zhang¹², Caiguo Yu¹², Zhili Ji³

¹Beijing Key Laboratory of Diabetes Prevention and Research, Beijing, China; Departments of ²Endocrinology, ³General Surgery, Beijing Lu He Hospital, Capital Medical University, China

Received March 23, 2015; Accepted October 14, 2015; Epub October 15, 2015; Published October 30, 2015

Abstract: Objectives: To evaluate whether neck circumference (NC) could be used as a valid and effective method for identifying obesity and insulin resistance (IR) in Chinese adults. Methods: A total of 3307 adults aged 20-65 years were randomly recruited from two communities of Tongzhou, Beijing. Height, weight, waist circumference (WC), hip circumference (HC), neck circumference (NC), blood pressure, fasting plasma glucose (FPG), fasting serum insulin (FINS), total cholesterol (TC), serum triglyceride (TG), High-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and Urinary albumin (UAlb) were measured. Pearson correlation coefficient was used to explore the relationship between NC and other measurements. Furthermore, the best cutoff values of NC for central obesity identification were determined by applying the receiver operating characteristic (ROC) curve analysis. Results: NC correlated positively with BMI, SBP and WC in both sexes. Both WC and NC correlated significantly positively with IR. A positive correlation between NC and FPG as well as a negative correlation between NC and HDL were found in obese men. NC≥38.5 cm for men and ≥34.5 cm for women were determined to be the best cutoff levels for identifying subjects with central obesity, with 82.9% accuracy for men and 79.9% accuracy for women. Conclusions: NC correlated positively with BMI, SBP and WC in both sexes. Both WC and NC correlated significantly positively with IR. A positive correlation between NC and FPG as well as a negative correlation between NC and HDL were found in obese men. NC≥38.5 cm for men and ≥34.5 cm for women were determined to be the best cutoff levels for identifying subjects with central obesity, with 82.9% accuracy for men and 79.9% accuracy for women. Large number of NC is suggested to be associated with high risk of developing metabolic disorders, such as diabetes and dyslipidemia.

Keywords: Neck circumference, predictor, central obesity, insulin resistance

Introduction

Obesity has become a health epidemic all over the world, the definition and classification of which are constantly changing with relevant studies in depth. The body mass index (BMI, weight divided by the square of height, kg/m²) is found with correlation of the amount of body fat, and widely used to define overweight and obesity [1, 2]. However, BMI does not directly measure body fat, or even implicate the distribution of fat in that the criteria using BMI for obesity determination varies in different populations [3-5]. Jean Vague first brought up the idea that body shape and/or fat distribution correlate with obesity in 1956 [6]. Following his thought, numerous methods, with the combination of BMI or not, have been developed to better define obesity in different populations, such as waist circumference (WC), waist/hip ratio, mid-upper arm circumference, subscapular/triceps ratio and neck circumference (NC) [7, 8].

NC measurement has been proved as a simple screening method to identify overweight and obese people in the Israeli population, which indicates upper body fat distribution and onset of central obesity [9, 10]. It is also documented that NC, as another predictor of visceral obesity, is more significantly associated with insulin resistance (IR) than WC in the European population [11]. However, whether NC can be a valid indicator for identifying central obesity and IR has not been investigated in the Chinese population.

In the current study, we demonstrated that measuring NC is also a practical and effective way to identify people with central obesity and IR in both Chinese men and women. Further-
more, we also determined the best cutoff values of NC that would be useful for identifying central obesity and IR among Chinese adults.

Methods

Study population and sampling method

A multistage, stratified, simple random sampling design was used to select participants from 2 neighborhood communities in Tongzhou. The communities were chosen to represent the variety of economic development and geographical distribution. A total of 3307 subjects aged 20-65 years were recruited in the study. Subjects with history of thyroid disorders or neck tumors were excluded.

Data collection

Information on social-demographic characteristics (age, gender, occupation, education level, etc.), physical activity, family history of diabetes, medical history and diet habits was collected by trained interviewers using questionnaires. Physical examination was also done, and height, weight, WC, HC and NC were measured according to the standard protocols of the China Chronic Disease and Risk Factor Surveillance 2010 [12]. BMI was calculated by dividing weight in kilograms by height in meters squared. Blood pressure test was repeated three times after each 5-minute rest at a sitting position and the lowest reading was used in the study. Waist circumference was measured at a midpoint between the lowest rib and iliac crest using a flexible tape, with the subject standing. Hip circumference was measured by wrapping the flexible tape around the greatest circumference of the buttock, with a standing position. Neck circumference was measured below the thyroid cartilage (underneath the Adam’s apple in men) in the front, and at the level of the mid cervical spine at the back using a flexible tape, with the subject standing.

Blood samples were collected from all participants to determine FPG, FINS, TC, TG, HDL-C and LDL-C after an overnight fast of 10 hours at least. A HITACHI 7020 automatic biochemical analyzer was used to test the concentration of FPG, TC, TG, HDL and LDL in the blood samples. FINS were determined by radioimmunoassay with the test kit provided by China Institute of Atomic Energy. UAlb was detected via a scattering immunoturbidimetric assay, using an Array 360 CE Protein Analyzer (Beckman Instruments Inc.). The Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) was calculated according to the formula: FPG (mmol/L) x FINS (mIU/L) / 22.5.

Diagnostic criteria

According to the criteria in 2000 China Health and Nutrition Survey [13], normal weight was defined as BMI between 18.5 kg/m² and 24.0 kg/m². Overweight was defined as BMI between...
Neck Circumference as an indicator of central obesity and insulin resistance

Table 2. Relationship between NC and other anthropometric measurements by gender

<table>
<thead>
<tr>
<th>Variable</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI (Kg/m²)</td>
<td>0.52 <0.01</td>
<td>0.41 <0.01</td>
</tr>
<tr>
<td>WC (cm)</td>
<td>0.49 <0.01</td>
<td>0.32 <0.01</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>0.20 <0.01</td>
<td>0.13 <0.01</td>
</tr>
</tbody>
</table>

Note: BMI, Body Mass Index; WC, Waist Circumference; SBP, Systolic Blood Pressure.

Table 3. Relationship between HOMA-IR and NC/WC by gender

<table>
<thead>
<tr>
<th>Variable</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC (cm)</td>
<td>0.18 <0.01</td>
<td>0.29 <0.01</td>
</tr>
<tr>
<td>WC (cm)</td>
<td>0.24 <0.01</td>
<td>0.47 <0.01</td>
</tr>
</tbody>
</table>

Note: HOMA-IR, Homeostatic Model Assessment of Insulin Resistance; NC, Neck Circumference; WC, Waist Circumference.

Table 4. Relationship between NC and other anthropometric measurements by gender

<table>
<thead>
<tr>
<th>Variable</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPG (mmol/L)</td>
<td>0.25 <0.01</td>
<td>0.06 >0.01</td>
</tr>
<tr>
<td>HDL (mmol/L)</td>
<td>-0.12 <0.05</td>
<td>-0.01 >0.01</td>
</tr>
</tbody>
</table>

Note: NC, Neck Circumference; FPG, Fasting Plasma Glucose; HDL, High-Density Lipoprotein.

24.0 kg/m² and 28 kg/m². And obesity was defined as BMI of 28 kg/m² or higher. Central obesity was defined as waist circumference of 85 cm or larger in males and 80 cm or larger in females [5].

Statistical analysis

All the continuous variables were presented as mean ± standard deviation. Pearson correlation coefficient was used to explore the relationship between NC and other anthropometric measurements. For the purpose of normal distribution, logarithmic transformation was applied to HOMA-IR in all statistical analyses. Receiver operator characteristic (ROC) curve analysis was performed to determine the accuracy of NC in predicting central obesity and to find out the optimal cutoff values for identifying central-obese adults. The maximum value of the Youden’s index was used as the criterion for selecting the optimal cutoff values of NC. Two-sided P value was used with the significance level of 0.05. All of the analyses were performed with SPSS Statistics 17.0 for Windows (SPSS Inc.).

Results

Of the 3307 study subjects, 1144 subjects were male, and 2163 female. A total of 1047 subject participants were with normal weight, 1362 participants were overweight and 898 were obese. The average BMI for normal-weight, overweight and obese men were 21.8, 26.9 and 30.7, respectively. For women, the numbers were 21.8, 26.0 and 30.9. The average NC was 36.9 cm, 39.7 cm and 42.1 cm for normal-weight, overweight and obese men, and 34.1 cm, 36.1 cm and 38.5 cm for women in the corresponding groups. Normal-weight, overweight and obese men had an average WC of 84.1 cm, 93.9 cm and 103.4 cm. Normal-weight, overweight and obese women had an average WC of 80.9 cm, 90.3 cm and 100.0 cm. As expected, NC, WC, HC, FPG, FINS, TC, TG, LDL, UAlb and HOMA-IR all increased with BMI, and HDL decreased as BMI declined, in both genders (Table 1). Subjects with obesity had the highest NC, WC, HC, FPG, FINS, TC, TG, LDL, UAlb and HOMA-IR and the lowest HDL among the three groups.

In both sexes, NC correlated positively with BMI (r=0.52, P<0.01 in men and r=0.41, P<0.01 in women), SBP (r=0.20, P<0.01 in men and r=0.13, P<0.01 in women) and WC (r=0.47, P<0.01 in men and r=0.32, P<0.01 in women) (Table 2). Both WC and NC correlated significantly positively with HOMA-IR (WC: r=0.24, P<0.01 in men and r=0.47, P<0.01 in women; NC: r=0.18, P<0.01 in men and r=0.29, P<0.01 in women) (Table 3). After stratifying the subjects by BMI and gender, we found a positive correlation between NC and FPG and a negative correlation between NC and HDL in obese men. However, such correlation was not seen in obese women (Table 4).

Using the ROC Curve Analysis, NC≥38.5 cm for men and ≥34.5 cm for women were determined to be the best cutoff levels for identifying sub-
Neck Circumference as an indicator of central obesity and insulin resistance

In this study, NC correlated well with other anthropometric measurements in identifying overweight and obese population. NC correlated positively and significantly with BMI and WC in both genders, indicating that NC could be used as a valid marker for both overall obesity and central obesity. In addition, the correlation between NC and HOMA-IR was stronger in women than that in men, which may be related with the gender difference in fat metabolism [20]. Moreover, NC correlated positively with FPG and negatively with HDL in obese men, indicating a higher risk of developing metabolic disorders in that population. However, similar correlation was not found in obese women. Further studies are needed to explore this issue.

Based on our analyses, we determined NC≥38.5 cm for men and ≥34.5 cm for women as the best cutoff values for identifying the subjects with central obesity, with 82.9% accuracy for men and 79.9% accuracy for women. These results were slightly different from the cutoff values reported by a recent study in China. According to the study, NC≥37 cm for men and ≥35 cm for women were the best cutoff values for identifying population with central obesity. This discrepancy may be explained by the use of different study subjects. The participants were selected randomly from two communities.

Figure 1. The receiver operating characteristic (ROC) curves for men and women to identify central obesity. A. ROC curve for NC in women. B. ROC curve for NC in men. NC, neck circumference.

Discussion

Various methods are available for identifying obesity, such as BMI, waist and waist-hip ratio. Among those methods, WC was used as the most common index to determine central obesity. However, WC alone as the criterion of central obesity is inadequate to tell whether it is caused by abdominal subcutaneous adipose tissue or visceral adipose tissue. The visceral adipose tissue mass, instead of the subcutaneous adipose tissue mass, was significantly correlated with IR, type 2 diabetes and cardiovascular diseases, demonstrated by previous studies [14-17]. In addition, upper-body subcutaneous adipose tissue, estimated by NC, was also found to be associated with type 2 diabetes and IR [18, 19]. Therefore, in addition to WC, NC could also be used as a simple, quick method for identifying obesity and insulin resistance. Our study confirmed this conclusion by demonstrating the positive correlation between HOMA-IR and both WC and NC in both genders.
in this study while a group of diabetes patients were recruited in the study mentioned above.

Disclosure of conflict of interest

None.

Address correspondence to: Zhili Ji, Department of General Surgery, Beijing Lu He Hospital, Capital Medical University, 82, South Xinhua Road, Tongzhou District, Beijing 101149, China. E-mail: jizhili@medmail.com.cn

References

Neck Circumference as an indicator of central obesity and insulin resistance

Neck Circumference as an indicator of central obesity and insulin resistance
