Original Article
Aldehyde dehydrogenase 1 expression correlates with clinicopathologic features of patients with breast cancer: a meta-analysis

Jin-Fang Liu1, Pu Xia2, Wen-Qiang Hu1, Dan Wang3, Xiao-Yan Xu1

1Department of Pathophysiology, School of Basic Medical Science, China Medical University, Shenyang 110001, Liaoning, P. R. China; 2Department of Cell Biology, Basic Medical College of Liaoning Medical University, Jinzhou 121000, Liaoning, P. R. China; 3Department of Histology and Embryology, Basic Medical College of Liaoning Medical University, Jinzhou 121000, Liaoning, P. R. China

Received March 11, 2015; Accepted May 25, 2015; Epub June 15, 2015; Published June 30, 2015

Abstract: A number of studies have investigated the relationship between aldehyde dehydrogenase 1 (ALDH1) expression and the clinical pathological features of the patients with breast cancer. However, conclusions reported by different parties seem to be inconsistent. We have reviewed published studies and carried out this meta-analysis to provide credible results. We searched PubMed for articles published in English until September 12, 2014. Our main analyses were focused on the association between ALDH1 and the clinical pathological features, such as age, tumor size, nodal status, lymphovascular invasion, histological grade, and the expression of ER, PR, and HER2 by meta-analysis methods. If heterogeneity was observed, we used random effects model to calculate the overall odds ratios, otherwise fixed effects model was used. Twenty-one eligible studies were included in the present meta-analysis. From the pooled analyses, there was significant association between ALDH1 expression and histological grade (low vs. intermediate: pooled OR = 1.51, 95% CI: 1.09-2.10, \(P = 0.01 \); intermediate vs. high: pooled OR = 1.86, 95% CI: 1.12-3.07, \(P = 0.02 \)), ER expression (pooled OR = 0.41, 95% CI: 0.29-0.58, \(P < 0.00001 \)), and PR expression (pooled OR = 0.56, 95% CI: 0.40-0.77, \(P = 0.0004 \)). No clear correlation was found between ALDH1 expression and age, tumor size, lymph node (LN) metastasis, lymphovascular invasion, and HER2 expression (\(P > 0.05 \)). Despite the inconsistency in the published reports, this meta-analysis provides credible evidence to support the association between ALDH1 and breast cancer. However, it is necessary to conduct large sample studies using standardized and well-matched controls.

Keywords: Breast cancer, ALDH1, ER, PR, histological grade

Introduction
Breast cancer is a heterogeneous disease, comprising various histological types, with distinct clinical presentations and underlying molecular signatures [1]. Aldehyde dehydrogenase 1 (ALDH1) is an aldehyde dehydrogenase, responsible for oxidation of retinol to retinoic acid, important for normal development and homoeostasis in several organs and crucial during embryogenesis [2]. Mammary stem cells, as identified by cells expressing the marker ALDH1, appear to be correlated with malignant transformation of breast tissue [3]. ALDH1 expression has been related to poor clinical outcome, absence of estrogen and progesterone receptors, and expression of basal cytokeratins in prior studies of human breast cancers [4, 5].

To date, numerous studies have investigated the association between ALDH1 expression and breast cancer. To provide a broad description of the relationship of ALDH1 to breast cancer, we do not concentrate on a single primary analysis, but we conducted a meta-analysis of all published studies to assess the robustness of the relationship between ALDH1 expression and clinicopathologic parameters of breast cancer patients.

Materials and methods
Publication search and data extraction

The electronic database PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) was searched by using the following search terms: “ALDH1” and “breast cancer”. Letters to the editor,
reviews, and articles published in a book or papers published in non-English language were excluded. However, these articles were also scanned to find additional eligible studies. Studies were included when the following criteria were met: (1) published in English with the full text available, (2) the use of a case control design or a cohort design, and (3) the availability of data to allow the estimation of the odd ratios (OR) for survival with a 95% CI. The review process was performed by two independent reviewers (first author and third author).

The following information was recorded for each study: first author’s name, year of publication, patient source, number of cases, age, and test method. Information was carefully extracted from all eligible publications independently by two of the authors of the present study (first author and third author). Differences in the extraction of data were checked by a third investigator (corresponding author). After extraction, data were reviewed and compared by the other two independent investigators (second author and fourth author). Disagreements between the two extractors were resolved by consensus among the investigators.

Meta-analysis

For the quantitative aggregation of results, odd ratios (OR) and their 95% confidence intervals (CIs) were combined to give the effective value. One hundred and seventy-seven articles were identified initially using the search strategy above. Close screening of these 177 studies excluded 155 because of the following reasons: non-human studies, insufficient information, review, or letter to editor. Two of the remained 22 papers were previously written by the same author (Zhong et al. [7] and [12]), we selected the latest one [12]. Eventually, 21 eligible studies were included in the present meta-analysis [8-28]. The study selection procedure is showed in Figure 1 and the study characteristics are displayed in Table 1.

ALDH1 expression and breast cancer

No clear correlation was found between ALDH1 expression and age (pooled OR = 0.92, 95% CI: 0.73-1.17, P = 0.52) (Figure 2), tumor size (pooled OR = 1.10, 95% CI: 0.85-1.43, P = 0.46) (Figure 3), lymph node (LN) metastasis (pooled OR = 1.08, 95% CI: 0.88-1.32, P = 0.47) (Figure 5), and lymphovascular invasion (pooled OR = 0.79, 95% CI: 0.43-1.45, P = 0.45) (Figure 6). ALDH1 expression was associated with histological grade (low vs. intermediate: pooled OR = 1.51, 95% CI: 1.09-2.10, P = 0.01; intermediate vs. high: pooled OR = 1.86, 95% CI: 1.12-3.07, P = 0.02) (Figure 4), ER expression (pooled OR = 0.41, 95% CI: 0.29-0.58, P < 0.00001) (Figure 7), and PR expression (pooled OR = 0.56, 95% CI: 0.40-0.77, P = 0.0004) (Figure 8), while not associated with HER2
ALDH1 and breast cancer

Table 1. Characteristics of studies included in the meta-analysis

<table>
<thead>
<tr>
<th>First author</th>
<th>Year</th>
<th>Country</th>
<th>Ages (mean)</th>
<th>Cases</th>
<th>Method</th>
<th>Antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gong [8]</td>
<td>2014</td>
<td>America</td>
<td>49</td>
<td>74</td>
<td>IHC</td>
<td>BD Biosciences 1:100</td>
</tr>
<tr>
<td>Yoshioka [9]</td>
<td>2011</td>
<td>Japan</td>
<td>52</td>
<td>257</td>
<td>IHC</td>
<td>BD Biosciences 1:1000</td>
</tr>
<tr>
<td>Ohi [10]</td>
<td>2011</td>
<td>Japan</td>
<td>56</td>
<td>106</td>
<td>IHC</td>
<td>BD Biosciences 1:1000</td>
</tr>
<tr>
<td>Zhong [12]</td>
<td>2014</td>
<td>China</td>
<td>Not shown</td>
<td>121</td>
<td>IHC</td>
<td>Abcam 1:100</td>
</tr>
<tr>
<td>De Brot [16]</td>
<td>2012</td>
<td>Brazil</td>
<td>55</td>
<td>140</td>
<td>IHC</td>
<td>Epitomics 1:150</td>
</tr>
<tr>
<td>Dong [17]</td>
<td>2013</td>
<td>China</td>
<td>49</td>
<td>161</td>
<td>IHC</td>
<td>BD Biosciences 1:200</td>
</tr>
<tr>
<td>Tsukabe [18]</td>
<td>2013</td>
<td>Japan</td>
<td>Not shown</td>
<td>194</td>
<td>IHC</td>
<td>BD Biosciences 1:100</td>
</tr>
<tr>
<td>Charafe-Jauffret [20]</td>
<td>2010</td>
<td>America</td>
<td>Not shown</td>
<td>109</td>
<td>IHC</td>
<td>BD Biosciences 1:100</td>
</tr>
<tr>
<td>Sakakibara [21]</td>
<td>2012</td>
<td>Japan</td>
<td>Not shown</td>
<td>115</td>
<td>IHC</td>
<td>BD Biosciences 1:200</td>
</tr>
<tr>
<td>Lee [22]</td>
<td>2011</td>
<td>Korea</td>
<td>46</td>
<td>92</td>
<td>IHC</td>
<td>BD Biosciences 1:100</td>
</tr>
<tr>
<td>Alamgeer [23]</td>
<td>2014</td>
<td>Australia</td>
<td>Not shown</td>
<td>134</td>
<td>IHC</td>
<td>BD Biosciences 1:200</td>
</tr>
<tr>
<td>Nalwoga [24]</td>
<td>2010</td>
<td>Uganda</td>
<td>46.2</td>
<td>192</td>
<td>IHC</td>
<td>BD Biosciences 1:250</td>
</tr>
<tr>
<td>Morimoto [26]</td>
<td>2009</td>
<td>Japan</td>
<td>52.6</td>
<td>203</td>
<td>IHC</td>
<td>BD Biosciences 1:100</td>
</tr>
<tr>
<td>Yu [27]</td>
<td>2010</td>
<td>China</td>
<td>56</td>
<td>96</td>
<td>IHC</td>
<td>Abcam 1:100</td>
</tr>
<tr>
<td>Mieog [28]</td>
<td>2012</td>
<td>Netherlands</td>
<td>Not shown</td>
<td>574</td>
<td>IHC</td>
<td>BD Biosciences NA</td>
</tr>
</tbody>
</table>

Figure 2. Forest plot and funnel plot for ALDH1 expression and the age of the patients with breast cancer.

Figure 3. Forest plot and funnel plot for ALDH1 expression and tumor size.

expression (pooled OR = 1.45, 95% CI: 0.98-2.13, P = 0.06) (**Figure 9**). No obvious publication bias was observed in these studies (**Figures 2-9**).
ALDH1 and breast cancer

Discussion

In the present meta-analysis, we have combined 21 published papers to evaluate the association between ALDH1 expression and the pathologic characteristics of breast patients known to be important for the clinical outcome, such as tumor size, nodal status, hormonal receptor status. ALDH1 may have a role in early differentiation of stem cells and stem cell proliferation through its role in oxidizing retinol to retinoic acid, a modulator of cell prolif-
ALDH1 and breast cancer

ALDH1 expression has been employed for identification of human cancer stem cells [30-32]. Several studies have assessed ALDH1 expression by immunohistochemistry in breast tissue, either in nonmalignant or malignant breast tumors in order to define ALDH1 role and impact in predicting cancer development [7-28]. Since the first report by Ginestier et al. [33] showed ALDH1 expression was associated with poor clinical outcome in human breast cancer, more and more studies provided evidence that a significant association between ALDH1 expression and the patients’ clinical outcome [7-28]. However, these findings are not without controversy. Due to the complexity of disease, it is likely that only combinations of previous studies will provide more credible results. Resetkova et al. [34] showed that tumoral stromal expression of ALDH1 by immunohistochemistry was associ-
ALDH1 and breast cancer

ated with survival of triple negative invasive breast carcinomas.

Triple negative breast cancer (TNBC) [negative for expression of estrogen and progesterone receptors (ER, PR) and HER2/neu protein] represent a subtype of breast cancer associated with poor prognosis and highly aggressive behavior [35]. Our pooled results confirmed that ALDH1 expression was associated with histological grade, ER expression, and PR expression. However, we didn’t find any association of ALDH1 and HER2. To our knowledge, although ALDH1 could be used as an independent marker for breast cancer, the mechanisms of ALDH1 in breast cancer remains unclear. Intensive studies were needed to elucidate the intrinsic mechanism.

Some limitations of this meta-analysis should be taken into account. Firstly, the results calculated in our meta-analysis may have bias as we only collected full published papers and articles published in English. Secondly, because of inability to obtain raw data, we could perform only a study-level but not a patient-level meta-analysis, which would have enabled us to adjust for multiple risk factors. In the last, case selection, technique, and interpretation also raise the discrepancy of each study. For example, the cutoff value of immunohistochemistry was defined differently in each study.

In conclusion, despite the inconsistency in the published reports, this meta-analysis provides credible evidence to support the association between ALDH1 and breast cancer. However, it is necessary to conduct large sample studies using standardized and well-matched controls.

Acknowledgements

The authors would like to thank Ms. Ying Xu (China Medical University) for editing and reviewing of the manuscript.

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Xiao-Yan Xu, Department of Pathophysiology, School of Basic Medical Science, China Medical University, Shenyang 110001, Liaoning, P. R. China. E-mail: xuxiaoyancmu@163.com

References

[1] Weigelt B, Geyer FC and Reis-Filho JS. Histo-

[2] Visus C, Ito D, Amoscato A, Maciejewska-
Franczak M, Abdelsalem A, Dhir R, Shin DM, Donnenberg VS, Whiteside TL and DeLeo AB. Identification of human aldehyde dehydroge-
nase 1 family member A1 as a novel CD8+ T-

[3] Kunju LP, Cookingham C, Toy KA, Chen W, Sa-
bel MS and Keeler CG. EZH2 and ALDH-1 mark breast epithelium at risk for breast cancer de-
velopment. Mod Pathol 2011; 24: 786-793.

ley BD, Hess DA and Allan AL. High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic abil-

[5] RESETKova E, Reis-Filho JS, Jain RK, Mehta R,
Thorat MA, Nakshatri H and Badve S. Prognos-

[6] Pereira TV, Rudnicki M, Cheung BM, Baum L, Yama-
da Y, Oliveira PS, Pereira AC and Krieger JE. Three endothelial nitric oxide (NOS3) gene polymorphisms in hypertensive and normoten-

and Sun Q. Expression of ALDH1 in breast in-
vasive ductal carcinoma: an independent pre-

[8] Gong Y, Wang J, Huo L, Wei W, Ueno NT and
Woodward WA. Aldehyde dehydrogenase 1 ex-

Y, Sagara Y, Sagara Y, Rai Y and Tanimoto A. Aldehyde dehydrogenase 1 expression is a pre-
dictor of poor prognosis in node-positive breast cancers: a long-term follow-up study. Histopa-
thology 2011; 58: 608-616.

[10] Ohi Y, Umekita Y, Yoshioka T, Souda M, Rai Y,
Sagara Y, Sagara Y, Sagara Y and Tanimoto A. Aldehyde dehydrogenase 1 expression pre-

[11] Tan EY, Thike AA, Breast Surgical Team at Out-
ram and Tan PH. ALDH1 expression is enriched in breast cancers arising in young women but
ALDH1 and breast cancer

[30] Zhou F, Mu YD, Liang J, Liu ZX, Chen HS and Zhang JF. Expression and prognostic value of

[31] Luo WR and Yao KT. Cancer stem cell characteristics, ALDH1 expression in the invasive front of nasopharyngeal carcinoma. Virchows Arch 2014; 464; 35-43.

