Original Article

Effect of essential oil of traditional two Saudi mint types and its possible role in cardiovascular and throat health

Ahmed M Ahmed, Hani A Ozbak, Hassan A Hemeg

Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawarah, Kingdom of Saudi Arabia

Received March 4, 2015; Accepted April 30, 2015; Epub May 15, 2015; Published May 30, 2015

Abstract: Essential Oil (EO) of two Mentha species (popularly used in Saudi Arabia), Mentha Longifolia (ML), and Mentha pulegium (MP) was isolated and subjected to inhibit LDL oxidation in 22 hypercholestrolemic samples collected from 22 subjects, and inhibited of 5 bacterial pathogen in vitro. LDL was isolated by ultracentrifugation and enhanced to oxidation with CuSO$_4$ and EO was added to prevent this oxidation, free radical scavenging activity was measured (decrease 50% DPPH radicals). EO content of phenolic and flavonoid was estimated. Five bacterial strains infect human throat was tested against EO of ML and MP in diffusion agar method. EO of the two herbs possess highly significant results, success to inhibit LDL oxidation ($P<0.001$ for both herbal than non addition against lipid peroxidase, $P<0.001$ ML better than MP $P<0.001$), decreased DPPH free radicals ($P<0.001$ for both than control, $P<0.001$ for ML than MP), and possess strong antioxidant activity for ML than MP (polyphenol and flavonoids contents was higher in EO of ML than MP, $P<0.001$). EO of ML possess strong antioxidant and antibacterial activity than MP, these attributed to its high flavonoid contents enable it to be a good for cardiovascular and throat health. The study supported the traditional uses of ML.

Keywords: Mentha longifolia, mentha pulegium, LDL oxidation, essential oil, antioxidant activity, antibacterial activity

Introduction

Oxidative modification of Low Density Lipoprotein (OxLDL) plays strongest role in the atherosclerosis pathogenesis, Oxidized LDL can engage monocytes to transform into macrophages in the arterial wall, the precursors of foam cells, leading to the early atherosclerotic lesions formations [1]. Highly efficient defense mechanisms induced by plasma antioxidants is well protected circulated LDL against active oxidation, but if this oxidative stress more than antioxidant defense capacity, then LDL may be oxidized [2]. Inhibition of LDL oxidation is a target for early reduction the incidence of atherosclerosis. Antioxidants, which can actively inhibit this oxidation and may protect against atherosclerosis due to the early prevention of atherogenesis [3].

The wild Mentha belong to Lamiaceae family which includes about 25-30 species that grow extensively worldwide [4]. Mentha longifolia (ML), Lamiaceae family grows widely in Mediterranean regions, Europe, Australia, and North Africa [5]. The most common species grown in Saudi Arabia is ML which is locally known as Al-Madinah mint, (also local name called Hassawi and Habaq). Another species is MP, which locally known as (Mugrabi), both species used in herbal teas, alone or as spice mixtures for many foods to offer aroma and flavor. In addition, Mentha species had been used for treatment of many diseases such as throat infection, bronchitis, nausea, and ulcerative colitis [6]. Furthermore, it is well-documented the essential oils of Mentha species have strong antibacterial properties against much bacterial growth [7]. Very few studies done about antioxidant and antimicrobial activity of Mentha species in Saudi Arabia, but no published data concern about inhibition of LDL oxidation by Mentha types so, this work undertaken to evaluate the ability of essential oil of ML and MP for inhibition of LDL oxidation and inhibit bacterial growth in vitro.
Subjects and methods

Clinical samples

Twenty two Saudi hyperlipidemic subjects randomly selected from different hospitals in (Al-Madinah Al-Munawarah, Saudi Arabia); baseline serum total cholesterol and LDL-cholesterol concentrations were (mean ± SD) (5.60±0.15 and 4.00±0.13 mmol/L respectively). All subjects were look healthy and not take any medications at least for last month before sample collection. Subjects with acute or chronic illness had been excluded. Blood samples were collected from all subjects after overnight fasting (9-12 hour). Ethical considerations: All participants were signed an informed consent before sampling.

Methods

Plant materials

ML and MP were purchased from the famous local market in Al-Madinah (mint market), and then it dried in direct sun light and open environment for 5 days.

Essential oil (EO) isolation procedure

50 g of ML and MP powder were put in hydrodistillation (3 hour) in 250 ml of DW by Clevenger-type apparatus (European Pharmacopoeia procedure) [8]. Then EO were isolated and stored at -20°C until analysis in brown container.

LDL isolation

EDTA blood centrifuged for 10 min, 200 RBM at 4°C, and then LDL was separated with ultracentrifugation 400,000 g for at least 40 min and 4°C with Beckman Instruments, Glenrothes, UK ultra-centrifuge. Concentrated LDL protein was determined with kits of Micro BCA Protein (Pierce Laboratories, Rockford, IL). The samples of LDL were diluted from all subjects after overnight fasting (9-12 hour). Ethical considerations: All participants were signed an informed consent before sampling.

Kinetic oxidation of LDL

LDL oxidation was measuring according to the method described by Esterbauer, [9] 100 µg/ml of LDL were placed and mixed with or without 20 µl of EO of ML and MP separately at 37°C for 15 min. 10 µl of 0.167 mM copper sulphate (CuSO4) freshly prepared was used to enhance the oxidation process, the kinetics of oxidation were calculating the absorbance changing at 10 min intervals for a total period of 200 min at 234 nm with Hitachi U2000 spectrophotometer. The Lag time was obtained from the intercepts of the twice tangents pulled to this phase (lag) and another phase (propagation phase). The oxidation rate was measured from propagation phase slope. Conjugated diene (CD) concentration measured with a molar extinction coefficient of 2.95 × 10^4 M^1 cm^-1. Maximum CD concentration was calculated as difference between CD (zero time) and CD (at maximum diene). The tests in all tubes were done in triplicate then mean and SD was calculated.

Free radical-scavenging activity

Estimated using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) (SIGMA-ALDRICH, Chemistry and Materials Company, USA). Aliquot amounts of each herbal EO were added together 2 ml of DPPH solution (0.1 mM DPPH dissolved in ethanol), then wait for 30 minutes in 37°C, and then determined in 516 nm wavelength using Hitachi U2000 spectrophotometer. Each volume of herbals required to lead to decrease 50% DPPH radicals in the absorbance at 516 nm proportional to the control was then recorded. Free radicals-scavenging activity recorded as inhibition according to (%) scavenging activity of DPPH radical: 1% = [A_c/A_s] × 100. A_c: blank absorbance. A_s: sample absorbance. The samples were analyzed in triplicate then mean and SD was calculated.

Determination of total phenolic content

The method described by Singletonet et al, [10]. With Folin-Ciocalteu reagent (FCR) using spectrophotometer for quantification. Briefly, 125 µl of FCR (10%) and 125 µl of sample were mixed with each other and incubated for 6 min, and then 125 µl of 7% Na2CO3 for 30 min. then the phenolic compounds and phosphomolybdic acid were reacted and produce a blue-colored complex its absorbance recorded spectrophotometrically with wavelength 760 nm. With standard calibration curve using gallic acid as standard, total phenolic contents was explained as Gallic Acid Equivalents (GAE) mg/g dry weight (DW).
Estimation of flavonoid content

The method described by Eberhardt et al. [11]. 250 μl of EO of herbalmixed with 780 μl of distilled water, followed by addition of 60 μl of 5% NaNO$_2$ solution and incubated for 6 min, so60 μl of 10% AlCl$_3$ solution were mixed, again incubated for 6 min at room temperature, then 400 μl of 1 M NaOH was mixed well. Then immediately the absorbance was recorded spectrophotometrically at 510 nm. With standard calibration curve using Runtin as a standard, flavonoid contents was expressed as Runtin Equivalents (RE) mg/g DW.

Estimation of end product of LDL oxidation

[estimation of: Malonaldehyde (MDA), Lipid hydroperoxide (LHP), and Protein carbonyl (PC)]. The oxidized LDL enhanced by CuSO$_4$ was tested with EO of ML and MP till 24 h and without addition of EO (control). After incubation time, 10 mM of EDTA was mixed to stop LDL oxidation, and all samples was further incubated to determination of MDA, LHP, and PC.

MDA determination

100 μl of aliquot serum was added to 900 μl of thiobarbituric acid reactive substances (TBARS) (0.37% TBA, 15% TCA in 0.25 N HCl) placed in water bath with 100°C, for 30 min. And after 40 min incubation at room temperature the mixture was centrifuged at 3000 RMB-10 min at 532 nm with Hitachi U2000 spectrophotometer the absorbance was recorded. With a molar extinction coefficient of 1.56 9 105 M$^{-1}$ cm$^{-1}$, MDA was calculated [12].

LHP determination

100 μl of Fox reagent (0.25 mMammonium sulfate, 0.1 mM xylenol orange, 25 mM H$_2$SO$_4$, and 4 mM BHT in 90% (v/v) HPLC-grade methanol). After incubation in water bath at 37°C -30 min, with 560 nm spectrophotometer the absorbance was measured. With a molar extinction coefficient of 4.3 9 104 M$^{-1}$ cm$^{-1}$, LHP was calculated (13).

For PC determination

100 μl of aliquot serum was added to 200 μl of DNPH solution (with 2 M HCl). After incubation in room temperature for 70 min, 600 μl of denaturing buffer (150 mM sodium phosphate buffer containing 3% SDS) was mixed thoroughly. 1800 μl of each of Ethanol and heptanes were added later; the all contents then were centrifuged for precipitation of protein after well mixed. With 1500 μl with each of ethyl acetate/ethanol (1:1, v/v) the protein was washed 3 times and dissolved in 1000 μl with each of denaturing buffer. At 360 nm spectrophotometer the absorption was recorded and with a molar extinction coefficient of 22.000 M$^{-1}$ cm$^{-1}$, PC was calculated [14].

Microbiological assay

Five bacterial strains generally infect the human throat were tested. These strains are: Gram (+ve) species: Streptococcus pyogenes (Group A streptococci). (ATCC 19615), Streptococcus pneumonia (ATCC 6303), and Corynebacterium diphtheria (ATCC 296). Gram (-ve) species: Haemophilus influenza (ATCC 33533), and Neisseria gonorrhoeae (ATCC 19424). The strains of bacteria were challenged and tested against EO of ML and MP. The diffusion on agar method in Muller Hinton medium was used. 0.2 ml of each type of bacteria was taken and put into 20 ml of sterile nutritive broth and incubated at 37°C for 3-5 hours to standardize the cultures. Then each type of bacteria was cultured in the medium followed by 0.2 ml of ML and MP EO then allowed for 1 day at 37°C. The test was repeated three times, mean and SD was calculated. A reference antibacterial antibiotic (Amoxicillin) was used.

Minimum inhibitory concentration (MIC)

The method recommended by the Standard Institute of Clinical Laboratory [15]. 15 μg/ml of EO of ML and MP was dissolved with 20% of dimethyl sulfoxide (DMSO; aqueous solution. In 96 well plates the mixture was added (100 μl in every well), and then 100 μ of Mueller Hinton broth (MHB) was mixed in all well. 5 μl (1.5 × 108) of colony forming unit/ml of microorganisms was mixed I all well. For positive control Amoxicillin antibiotic was applied in one well. Then incubated for 24 h aerobically at 36°C. To detect active metabolism of bacteria; 10 μl of 2, 3, 5-triphenyl-tetrazolium chloride(methanol solution 5 mg/ml) was added. MIC was known as lowest EO concentration that appears to inhibit bacterial growth spot detected with TTC.
Table 1. Antioxidant activity of ML and MP against DPPH, lag time, oxidation rate, maximum CD, total phenol and flavonoid contents

<table>
<thead>
<tr>
<th></th>
<th>DPPH test µg/ml</th>
<th>Lag time (min)</th>
<th>Oxidation ratio (nmol/min/mg LDL protein)</th>
<th>Maximum CD (nmol /mg LDL protein)</th>
<th>Total phenol (mg GAE/g DW)</th>
<th>Flavonoid content (mg RE/g DW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Mean ± SD (Fold)</td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Control</td>
<td>-</td>
<td>25.3±2.9 (1.0)</td>
<td>10.1±1.4</td>
<td>397.1±20.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ML</td>
<td>7.7±1.1#</td>
<td>208.4±27.2 (8.2)*,#</td>
<td>4.6±1.3*,,#</td>
<td>287.3±16.7*,,#</td>
<td>182.2±18.6*</td>
<td>26.3±2.1#</td>
</tr>
<tr>
<td>MP</td>
<td>10.2±1.7</td>
<td>138.4±11.8 (5.5)*</td>
<td>6.6±1.3*</td>
<td>316.2±13.1*</td>
<td>153.7±13.1</td>
<td>17.1±1.9</td>
</tr>
</tbody>
</table>

Abbreviations: DPPH: 1,1-diphenyl-2-picrylhydrazyl. GAE: Gallic Acid Equivalent. RE: Runtin Equivalent. DW: Dry Weight. SD: Standard Deviation. µl: micro liter. *: Significant compared to control level (P<0.001). #: Significant compared to MP level (P<0.001).

Figure 1. Effect of ML and MP EO on MDA, LHP and PC constituents, in CuSO₄ enhancement LDL oxidation. A-C: #: significant compared to control (P<0.0001). *: Significant compared to control (P<0.001). A: MDA: P<0.001 (ML vs. MP). B: LHP: P<0.001 (ML vs. MP). C: PC: P<0.001 (ML vs. MP).

Minimum bactericidal concentration (MBC)

10 µl of the broth (aliquot broth) were collected from each well and placed in MHB for 24 h at 37°C. MBC appear as necessary concentration to kill 99% or more (complete) of the inoculums. Also the test repeated three times and mean and SD was calculated.

Statistical analysis

Done by using SPSS version 19 (SPSS, Chicago, IL), all experiment were calculated in triplicate and the mean and standard deviation (SD) were applied using unpaired t-test for comparison of two variables and ANOVA for three, with 95% confidence interval, (P value of ≤ 0.05) consider significant. GraphPad prism software version 5 was used to design the figure.

Results

Antioxidant activity of ML and MP concerning DPPH, oxidation of LDL, lag time, oxidation rate, maximum CD, total phenol and flavonoid contents in this study was delivered in Table 1. For scavenging of 50% of the radicals of DPPH (Inhibitory Concentration IC₅₀), 7.7±1.1 and 10.2±1.7 µg/ml of EO of ML and MP respec-
Antibacterial activity of EO of ML and MP was compared with Amoxicillin antibiotic (standard antibiotic) as inhibition zones in mm in the media surround disc. The EO of ML hasessential sensitivity as antibacterial against the 5 species of bacteria rather than MP which possess weak activity, presented in Table 2.

MIC and MBC values compared with Amoxicillin, presented as diameter of inhibition zones, the results was expressed in Table 3, showed that EO of ML was active against the 5 bacterial strains than MP.

Discussion

It's well documented that oxidized LDL play a major role in the modification of atherosclerosis; the inhibition should be reducing the progression [16]. There were many studies show that LDL oxidation can be inhibited by an appropriate antioxidants; many natural antioxidants and herbal medicine was used to inhibit this oxidation [17]; for example Ohmori et al, use green tea, Thounaojam [19] et al, use Sida rhomboidea and Gajaria [20] et al, use Murraya Koenigii. In this study the EO of ML and MP was subjected for inhibition of LDL oxidation in vitro. According to our results the antioxidant activity of EO of ML and MP Eos for scavenging of 50% (IC50) of the radicals of DPPH, 7.7 µg/ml of ML and 10.2 µg/ml of MP were required. The antioxidant activity of EO of ML and MP was determined with the ability to remove free radical DPPH and with the ability to remove the reactive oxygen species (superoxide anion O₂⁻), the EO of both herbs possess high ability to inhibit the free radical of DPPH, agreed with Hajlaoui [21] et al. ML was better than MP for inhibit free radical of DPPH (P<0.05). Inhibitory effect of ML and MP against LDL oxidation mediated by CuSO₄ was recorded by determination the concentration of MDA, LHP and PC. The concentration was increased in the presence of oxidize LDL mediated by CuSO₄, without addition of EOs of the two herbal types, and decreased in control (LDL without addition of CuSO₄). When EO of ML and MP was mixed, it was significantly minimizing the concentration of MDA, LHP and PC; this was showed in Figure 1.

Mediation for LDL oxidation induced by CuSO₄ was increased in the presence of oxidize LDL mediated by CuSO₄, without addition of EOs of the two herbal types, and decreased in control (LDL without addition of CuSO₄). When EO of ML and MP was mixed, it was significantly minimizing the concentration of MDA, LHP and PC; this was showed in Figure 1.

Table 2. Antibacterial activity of EO of ML and MP showing inhibition zone diameter in mm

<table>
<thead>
<tr>
<th>Bacterial species</th>
<th>Inhibition zone diameter in mm of (Mean and SD) surround disc</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ML EO (10 µl) Mean</td>
<td>SD</td>
<td>MP EO (10 µl) Mean</td>
<td>SD</td>
<td>Amoxicillin (10 µg/disc) Mean</td>
<td>SD</td>
<td></td>
</tr>
<tr>
<td>Streptococcus pyogenes (Group A)</td>
<td>13.1</td>
<td>0.32</td>
<td>11.2</td>
<td>0.31</td>
<td>27.8</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>14.9</td>
<td>0.38</td>
<td>11.6</td>
<td>0.41</td>
<td>28.7</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>Corynebacterium diphtheria</td>
<td>15.2</td>
<td>0.29</td>
<td>11.8</td>
<td>0.28</td>
<td>29.9</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td>9.9</td>
<td>0.4</td>
<td>7.9</td>
<td>0.16</td>
<td>26.1</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Neisseria gonorrhoeae</td>
<td>10.5</td>
<td>0.83</td>
<td>9.2</td>
<td>0.22</td>
<td>26.4</td>
<td>1.7</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: mm: millimeter. SD: Standard Deviation. ML EO: Mentha longifolia Essential Oil. MP: Mentha pulegium Essential Oil.
Essential oil of mint and human health

Table 3. MIC and MBC showed antibacterial activity of EO of ML and MP and Amoxicillin (μg/ml)

<table>
<thead>
<tr>
<th>Bacterial species</th>
<th>ML EO</th>
<th>MBC</th>
<th>MIC</th>
<th>MBC</th>
<th>MIC</th>
<th>MBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptococcus pyogenes (Group A)</td>
<td>3.4±0.3</td>
<td>3.7±0.4</td>
<td>1.4±0.1</td>
<td>2.4±0.3</td>
<td>28.3±6.2</td>
<td>29.5±6.4</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>3.9±0.3</td>
<td>3.4±0.2</td>
<td>1.6±0.2</td>
<td>2.4±0.5</td>
<td>29.8±8.4</td>
<td>30.3±5.2</td>
</tr>
<tr>
<td>Corynebacterium diphtheria</td>
<td>4.0±0.3</td>
<td>4.5±0.4</td>
<td>1.7±0.2</td>
<td>2.5±0.3</td>
<td>31.1±12.4</td>
<td>32.3±8.5</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td>2.2±0.4</td>
<td>2.9±0.3</td>
<td>0.9±0.1</td>
<td>1.4±0.2</td>
<td>23.4±7.9</td>
<td>24.8±4.5</td>
</tr>
<tr>
<td>Neisseria gonorrhoeae</td>
<td>2.4±0.2</td>
<td>3.0±0.2</td>
<td>1.0±0.1</td>
<td>1.7±0.2</td>
<td>25.2±9.2</td>
<td>26.7±7.8</td>
</tr>
</tbody>
</table>

Abbreviations: MIC: minimum inhibitory concentration. MBC: minimum bactericidal concentration. Data represent as mean ± SD.

Antibacterial activity of EO of ML and MP in comparison with Amoxicillin antibiotic was expressed as inhibition zones in mm in the media surround disc. The antibacterial activity of ML attributed to its highest flavonoid content as the report of Akroum [28] et al, in contrast MP also possess high content of flavonoid but less than ML and possess weak antibacterial activity than ML. Antibacterial activity of ML was examined in previous studies [29, 30]; the present study was agreed with both studies although the bacterial species examined was different. Hajlaoui [31] et al, in Tunisia concluded that EO of ML is more active than MP due to presence of active compounds such as 1, 8 cineole and α-pinene. Oxygenated monoterpenes of the EO of these herbals suggested to have ability to distraction bacterial membrane with lipophilic constituents although the mechanism of its action was not fully understood [32]. However Rodrigues [33] et al, attributed the antibacterial activity in the EO of Mentha cervina for three oxygen-containing monoter-
pene compounds, mainly pulegone, isomenthone and menthone; and also describe the ability of gram -ve bacterial species to resist EO than gram +ve one because it have complex membrane structure. The present study showed significant activity against gram +ve bacterial species of EO of ML and weak inhibition zone against gram -ve species compare to the former. According to MIC and MBC, EO of ML showed high sensitivity against gram +ve strains and less against gram -ve bacteria in agree with other authors [21, 34-37]. Regarding to antibacterial activity, MIC and MBC of ML and MP in our results it’s possible to say that EO of ML possess strongest antibacterial activity than MP and comparable to other antibacterial activity of ML in different region in the world with minimal quantification differences. The different between antioxidant and antibacterial activities between (ML and MP) in our study and other studies in different world regions are suggested due to different constituents in EO, the frequency of these constituents, the soil in which the plant grow, environment, water, use of fertilizer, pesticides and insecticides.

To our knowledge, in KSA there are many reports describe the prevalence of hyperlipidemia which reach a serious rate [38-41], this help us to justify and recommended more studies for more awareness of the risk of oxidized bad lipid behaviors which play the key role -as mentioned - in cardiovascular disease. The present study considers the first report about antioxidant ability of ML and MP to inhibit LDL oxidation induced by CuSO$_4$ in KSA, and very few published report. But we did not elucidate the constituents of the EO and describe its antioxidant and antimicrobial. Further studies should be done in vivo to confirm antioxidant and antimicrobial of the EO; and for more expression and identification of EO components and physiologically and pharmacologically impact.

Conclusion
EO of ML possess strong antioxidant and antibacterial activity than MP, these activities of ML attributed to its high flavonoid contents enable it to be a good for cardiovascular and throat health. The study supported the traditional uses of ML.

Acknowledgements
This study was financially funded by the Deanship of Scientific Research, Taibah University, Al-Madinah, Saudi Arabia. By grant No. (435/6034).

Disclosure of conflict of interest
None.

Address correspondence to: Ahmed M Ahmed, Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munawarah, Kingdom of Saudi Arabia. E-mail: ahmedlab1@hotmail.com

References
Essential oil of mint and human health

[34] Stanislavjevič D, Dorsevič S, Milenković M, Lazić M, Veličković D, Randelović N, Zlatković B. Antimicrobial and Antioxidant Activity of the Essential Oils Obtained from MentholongifoliaL.
Essential oil of mint and human health

