Original Article

Association of hOGG1 Ser326Cys polymorphism with susceptibility to hepatocellular carcinoma

Jun Guo¹, Jing Yang², Yan Li¹

¹Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China; ²Department of Microbiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China

Received January 6, 2015; Accepted June 10, 2015; Epub June 15, 2015; Published June 30, 2015

Abstract: Background: Since, the relationship between hOGG1 Ser326Cys polymorphism and HCC was inconsistent in the recent literatures. The present meta-analysis based on previous studies was to obtain precise estimation on the issue. Methods: A computer search was carried out from PubMed, CBM and EMBASE databases. A total of nine case-control publications with 2583 HCC patients and 2271 controls were included in the meta-analysis. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the relationship of Ser326Cys polymorphism and HCC susceptibility. Z test was used to assess the significance of pooled OR. The fixed-effect model or random-effect model was employed according to heterogeneity. Results: Overall, hOGG1 Ser326Cys polymorphism was in relation with increased risk for HCC under the following genetic models: GG versus CC: OR=2.51, 95% CI=1.67-3.78; GG versus CG + CC: OR=2.27, 95% CI=1.57-3.30; GG + CG versus CC: OR=1.13, 95% CI=1.03-1.24. The subgroup analysis by ethnicity suggested that high risk for HCC was observed in Asians with GG and GG + CG genotype (GG versus CC: OR=2.17, 95% CI=1.49-3.17; GG versus CG + CC: OR=1.96, 95% CI=1.41-2.73; GG + CG versus CC: OR=1.13, 95% CI=1.03-1.25). For subgroup analysis based on source of control, GG genotype of Ser326Cys was significantly associated with HCC risk in hospital-based (HB) controls (GG versus CC: OR=2.31, 95% CI=1.50-3.56; GG versus CG + CC: OR=2.17, 95% CI=1.44-3.28), as well as in population-based (PB) models (GG vs. CC: OR=2.80, 95% CI=1.16-6.77; GG versus CG + CC: OR=2.39, 95% CI=1.08-5.30). Conclusions: According to the results, hOGG1 Ser326Cys polymorphism was associated with increased risk of HCC.

Keywords: Human 8-oxoguanine glycosylase 1, Ser326Cys, hepatocellular carcinoma, risk

Introduction

Hepatocellular carcinoma (HCC), one of the most common malignancies all over the world, causes over 700,000 new cases and more than a half million deaths each year. Over 80% HCC cases occur in the developing countries and the cases of China accounts for around 55% of the total [1]. Epidemiology studies have demonstrated that some environmental factors, such as chronic hepatitis B virus (HBV) infection, smoking, and excessive drinking may exacerbate HCC [2, 3]. However, like other cancers, genes may be decisive factors in the pathogenesis of HCC. It has been demonstrated that certain genetic mutation involving in the cell proliferation and apoptosis could promote the occurrence of HCC. The 8-oxoguanine lesion, one of the primary forms of oxidative DNA damage, can be removed from DNA by human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) [4-6]. The hOGG1 gene, located on chromosome 3, encodes a DNA glycosylase/apurinic-apyrimidinic lyase which induces the excision and removal of 8-hydroxy-2-deoxyguanine adducts [7]. It is so polymorphic that at least 231 single nucleotide polymorphisms (SNPs) in the gene have been reported and at least 20 sequence variants have been identified [8-11]. It is reported that hOGG1 is a possible suppressor of lung carcinogenesis in OGG1-knockout mice and the Ser326Cys polymorphism of hOGG1 in a bacterial complementation assay system is likely to dampen the activity of 8-oxoguanine lesion removal [12, 13]. However, among the reported
SNPs, several ones have been identified to be related with HCC susceptibility [14]. In recent years, *hOGG1* Ser326Cys (rs1052133), resulting in an amino acid substitution of serine (Ser) with cysteine (Cys) at codon 326, has been broadly investigated in the pathogenesis of HCC [15-17]. However, a consensus cannot be reached among these findings. Therefore, we designed a meta-analysis to further explore the association between *hOGG1* Ser326Cys polymorphism and HCC risk.

**Materials and methods**

**Search strategy**

We mainly searched PubMed, CBM and EMBASE databases to obtain relevant studies concerning *hOGG1* Ser326Cys polymorphism and HCC with the following keywords: “human 8-oxoguanine glycosylase 1” or “hOGG1”, “polymorphism” or “variants”, “HCC” or “hepatocellular carcinoma”. We also retrieved related...
Selection criteria

Studies correlated with hOGG1 Ser326Cys polymorphism and HCC were required to conform to the following criteria: (1) independent case-control studies; (2) providing efficient genotype data to calculate odds ratio (OR) and 95% confidence interval (CI); (3) concerning human studies. Exclusion criteria included: (1) without control population; (2) without eligible genotype frequencies; (3) duplicated publications. If two or more studies described the same cases, the more informative one would be selected.

Data extraction

The following data were extracted from each original study by two investigators individually: first author’s name, year of publication, country, ethnicity, control source, genotyping method, number of cases and controls, genotype frequency and P values for Hardy-Weinberg equilibrium (HWE). When studies contained more than one ethnic group or control source, the data were selected separately. Any inconformity would be resolved via discussion.

Statistical analysis

To assess whether hOGG1 Ser326Cys polymorphism was involved in HCC, we calculated the pooled ORs with corresponding 95% CIs under five genetic models: GG vs. CC, GG + CG vs. CC, GG vs. CG + CC, Allele G vs. Allele C and CG vs. CC. According to ethnicity and control source, subgroup analyses were conducted to specifically analyze the relationship. Z test was used to check whether the pooled ORs were significant. P<0.05 was considered statistically significant. The between-study heterogeneity was examined by χ²-based Q test. P>0.05 indicates no heterogeneity, then the fixed-effect model was adopted to calculate pooled ORs; otherwise, the random-effect model was selected. Begg’s funnel plot and Egger’s test were used to test potential publication bias. We conducted sensitivity analysis to assess the effects of each individual dataset on the pooled results by extracting each single study sequentially. HWE was checked in controls by χ² test. Statistical analyses were performed with STATA software (V.12.0, STATA Corp).

Results

Characteristics of studies

As shown in Figure 1, there were 109 records altogether obtained by databases and other sources, among which 34 full texts were considered potentially eligible. In the 34 studies, 19 were excluded for being unpublished and 6 for studying the same population. Finally, nine case-control publications were included in this meta-analysis [14, 15, 17-23]. Main characteristics of the included studies are presented in Table 1. Among these eligible studies, eight studies were conducted in Asians and one in Caucasians. Meanwhile, six studies involved hospital based (HB) population and three were population based (PB). The distributions of genotypes in the controls were in accordance with HWE except the article of Ji Long et al [22].
Table 2. ORs and heterogeneity results on the association of *hOGG1* -Ser326Cys polymorphism with risk of HCC

<table>
<thead>
<tr>
<th></th>
<th>GG vs. CC</th>
<th>GG + CG vs. CC</th>
<th>GG vs. CG + CC</th>
<th>Allele G vs. Allele C</th>
<th>CG vs. CC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR [95% CI]</td>
<td>( P _h )</td>
<td>OR [95% CI]</td>
<td>( P _h )</td>
<td>OR [95% CI]</td>
</tr>
<tr>
<td>Asian population</td>
<td>2.17 [1.49, 3.17]</td>
<td>&lt;0.05</td>
<td>1.13 [1.03, 1.25]</td>
<td>&lt;0.05</td>
<td>1.96 [1.41, 2.73]</td>
</tr>
<tr>
<td>Caucasian population</td>
<td>10.41 [4.84, 22.39]</td>
<td>0</td>
<td>1.08 [0.77, 1.51]</td>
<td>0</td>
<td>10.55 [4.99, 22.31]</td>
</tr>
<tr>
<td>Hospital control</td>
<td>2.31 [1.50, 3.56]</td>
<td>&lt;0.05</td>
<td>1.14 [0.94, 1.39]</td>
<td>&lt;0.05</td>
<td>2.17 [1.44, 3.28]</td>
</tr>
<tr>
<td>Population control</td>
<td>2.80 [1.16, 6.77]</td>
<td>0</td>
<td>1.15 [0.98, 1.36]</td>
<td>0.48</td>
<td>2.39 [1.08, 5.30]</td>
</tr>
<tr>
<td>Total</td>
<td>2.51 [1.67, 3.78]</td>
<td>&lt;0.05</td>
<td>1.13 [1.03, 1.24]</td>
<td>0.08</td>
<td>2.27 [1.57, 3.30]</td>
</tr>
</tbody>
</table>

\( P \_h \): P-value of heterogeneity test.
**HOGG1 Ser326Cys polymorphism and HCC**

**Meta analysis results**

**Table 2** exhibited ORs and heterogeneity results of the meta-analysis, and **Figures 2** and **3** showed the forest plots on the association of *hOGG1* Ser326Cys polymorphism with HCC risk based on ethnicity and control source respectively. Overall, we found that GG or GG + CG genotypes carriers were more likely to suffer HCC (GG versus CC: OR=2.51, 95% CI=1.67-3.78; GG versus CG + CC: OR=2.27, 95% CI=1.57-3.30; GG + CG versus CC: OR=1.13, 95% CI=1.03-1.24). In the subgroup analysis by ethnicity, the results revealed that *hOGG1* Ser326Cys polymorphism was associated with high risk of HCC in Asians (GG versus CC: OR=2.17, 95% CI=1.49-3.17; GG versus CG + CC: OR=1.96, 95% CI=1.41-2.73; GG + CG versus CC: OR=1.13, 95% CI=1.03-1.25). Results of subgroup analysis based on source of control showed that there existed significant relationship of GG genotype with elevated risk for HCC in HB and PB population (HB: GG versus CC: OR=2.31, 95% CI=1.50-3.56; GG versus CG + CC: OR=2.17, 95% CI=1.44-3.28; PB: GG versus CC: OR=2.80, 95% CI=1.16-6.77; GG versus CG + CC: OR=2.39, 95% CI=1.08-5.30).

**Sensitivity analysis**

We deleted each single study in the sensitivity analysis to check whether the selected study had influence on the combined results. The pooled ORs were not materially altered, which indicated that our meta-analysis results were highly stable.

**Publication bias**

Begg’s funnel plot and Egger’s test were used to check the potential publication bias of the present study. We could see though **Figure 4**...
that the shape of the funnel plot seemed symmetric under CG versus CC genetic model. Moreover, Egger's test showed no evident publication bias ($P=0.56$), which suggested that even there is subtle bias from publications; it might not materially alter the results of our meta-analysis.

**Discussion**

DNA damage, mainly caused by environmental factors and normal metabolic process in cells, occurs at a rate of 10,000 to 1,000,000 molecular lesions per cell per day [24]. It may generate cancerogenic substances once tumor suppress genes are inactive or oncogenes are activated [25]. Genetic polymorphisms resulting from DNA damage or the insertion or deletion of segments of DNA by mobile genetic elements may lead to discernible changes in the observable characteristics of an organism, thus play crucial roles in both normal and abnormal biological processes especially in cancer [26-28]. In recent years, the relationship between genetic polymorphisms and risk of HCC has been broadly studied and some confounding findings have been obtained [29, 30].

One of the single nucleotide polymorphisms (SNPs) of $hOGG1$ gene, Ser326Cys polymorphism has been reported to affect the functions of $hOGG1$ and may be associated with the risk for lung, colon, stomach and esophageal cancers, but not breast cancer [31-33]. Moreover, Yuan et al. found that $hOGG1$ Ser326Cys polymorphism could work together with environmental factors of smoking, drinking and HBV infection in the pathogenesis of HCC [15]. However, several investigations provided null association between $hOGG1$ Ser326Cys and HCC susceptibility [17, 18]. Meanwhile, Cardin Romilda et al. pointed out that Ser326Cys polymorphism was not in rela-
HOGG1 Ser326Cys polymorphism and HCC

According to our meta-analysis, overall, increased risk of HCC was in relation with hOGG1 Ser326Cys polymorphism, especially the GG genotype. Moreover, in the subgroup analysis by ethnicity and source of control, high risk for HCC was found among Asians with GG or GG + CG genotypes. Besides, GG genotype was also observed to be related with HCC in HB and PB population.

Overall, the results of our meta-analysis were reliable, however, there are still some limitations. First, HCC is a multi-factorial disease and caused by various genetic and environmental factors. In our meta-analysis, we only studied the association between one single polymorphism with HCC, not considering the influence of gene-gene or gene-environment interaction, which may reach a unilateral conclusion. Second, the genotyping method and selection criteria of controls in the studies were not the same, which may introduce in some biases into our analysis. Finally, most of the included studies were conducted among Asians. Therefore, more studies concerning Caucasians should be gathered.

In conclusion, despite some limitations, our meta-analysis demonstrated that hOGG1 Ser326Cys polymorphism was related with increased risk for HCC. Well-designed studies considering gene-gene or gene-environment risk factors are needed to clarify this issue in the future.

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Yan Li, Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China. E-mail: yanlitf1120@163.com

References


HOGG1 Ser326Cys polymorphism and HCC


**HOGG1 Ser326Cys polymorphism and HCC**

