Original Article

Association between VEGF -634G/C polymorphism and osteonecrosis of the femoral head susceptibility: a meta analysis

Yaosheng liu1*, Zhicheng Zhang2*, Shubin Liu1, Xiuyun Su1, Shiguo Zhou3

1Department of Orthopedics, 307 Hospital of PLA, Beijing, People’s Republic of China; 2PLA Institute of Orthopedics, Beijing Military General Hospital, Beijing, People’s Republic of China; 3Statistics Room, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, People’s Republic of China. *Co-first authors.

Received December 31, 2014; Accepted May 25, 2015; Epub July 15, 2015; Published July 30, 2015

Abstract: Background: VEGF plays an important role in bone formation and repair. However, the effects of VEGF -634G/C polymorphisms on the pathogenesis of osteonecrosis of the femoral head (ONFH) were not conclusive. Our research was aimed to further analyze the association of VEGF -634G/C polymorphism with ONFH risk. Methods: The relevant articles were searched in PubMed, Elsevier, EMBASE, Web of Science and Chinese National Knowledge Infrastructure (CNKI) database. And a total of 692 cases and 875 controls were included. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess the correlation of VEGF -634G/C polymorphism and ONFH susceptibility. Chi-square based Q-statistic test was used to evaluate heterogeneity among the studies. The random-effects model or fixed-effects model was used depending on heterogeneity. Results: The sensitivity analysis and publication bias test indicated that our results were stable and credible. And the results suggested that VEGF -634G/C polymorphism was significantly related with increased risk for ONFH in Asian population (CC versus GG: OR=1.34, 95% CI=1.02-1.76). Conclusion: The results indicated that VEGF -634G/C polymorphism might serve as genetic-susceptibility factor for ONFH.

Keywords: VEGF, polymorphism, osteonecrosis of the femoral head

Introduction

Osteonecrosis of the femoral head (ONFH), also called avascular necrosis (AVN), is a common refractory disease in orthopedic field [1, 2], which seriously affects the life quality of people, especially the young [3]. The pathogenesis of ONFH is that osteocytes and marrow death caused by blood supply interruption to bone result in structural change of femoral head, collapse of the femoral head and joint dysfunction [4, 5]. And ONFH is usually divided into two types: traumatic and non-traumatic ONFH. The former is mainly induced by hip traumas such as femoral neck fracture and hip dislocation, while the latter is usually attributed to abuse of corticosteroids and alcoholism. And it has been confirmed that 80% of the femoral heads will collapse without proper and timely treatment when the osteonecrosis process begins [6]. Hence it is urgent to find out high-risk population of ONFH and then provide timely treatment for the patients.

Vascular endothelial growth factor (VEGF), located on chromosome 6p31.3, decodes a signal protein, which contributes to the creation of new blood vessels during embryonic development [7]. Moreover, as one member of growth factors, VEGF plays an important role in bone formation and cartilage and bone repair [8]. Additionally, it has been demonstrated that overexpression of VEGF is related with the occurrence of vascular diseases. Amo Y et al. have reported that serum level of VEGF-D is significantly increased in patients with angiosarcoma [9]. And the study of Andraweera PH et al. suggested that VEGF showed predictive value for early-onset pre-eclampsian [10]. Since the key role of VEGF for diseases, the association of VEGF polymorphisms and diseases susceptibility has attracted a lot of attention [11-18].

The relationship of VEGF -634G/C polymorphism with ONFH susceptibility has been reported, however, the results were inconclusive. Therefore, the present meta-analysis was
aimed to explore the precise correlation of VEGF-634G/C polymorphism and ONFH risk in Asians, which will help for the identification of high-risk population for ONFH.

Materials and methods

Search strategy

The related articles were searched in PubMed, Elsevier, EMBASE, Web of Science and Chinese National Knowledge Infrastructure (CNKI) databases with the following terms: “VEGF” or “vascular endothelial growth factor”, “-634G/C” or “rs2010963”, “osteonecrosis of the femoral head” or “ONFH” or “avascular necrosis of femoral head”, “polymorphism” or “variant”. The selected studies did not include unpublished reports. The most recent publication including more information was adopted if more than one records were identified.

Inclusion criteria

Eligible studies were selected based on the following criteria: 1) case-control studies; 2) exploring the association between VEGF-634G/C polymorphism and ONFH risk; 3) providing detailed genotype data to calculate odds ratio (OR) and 95% confidence interval (CI); 4) being conducted in Asian populations. The precluded studies were: 1) review articles, case-only articles and family-based articles; 2) animal studies; 3) not consistent with Hardy-Weinberg equilibrium (HWE).

Data extraction

Two investigators extracted the raw data independently. The data included last name of first author, year of publication, country, ethnicity, source of control, genotyping method, number of cases and controls, genotype frequencies in case and control groups. The disagreement terms were solved by a third investigator.

Statistical analysis

Chi-square test was used to detect whether genotypes distribution of in controls were consistent with HWE. OR with 95% CI were calculated to assess the association of VEGF-634G/C...
VEGF -634G/C Polymorphism and ONFH

Table 1. Principle characteristics of the studies included in the meta-analysis

<table>
<thead>
<tr>
<th>First author</th>
<th>Year</th>
<th>Country</th>
<th>Ethnicity</th>
<th>Control source</th>
<th>Genotyping method</th>
<th>HWE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liu</td>
<td>2012</td>
<td>China</td>
<td>Asian</td>
<td>Population based</td>
<td>PCR-RFLP</td>
<td>0.55</td>
</tr>
<tr>
<td>Kim</td>
<td>2008</td>
<td>Korea</td>
<td>Asian</td>
<td>Population based</td>
<td>Taqman</td>
<td>0.71</td>
</tr>
<tr>
<td>Lee</td>
<td>2011</td>
<td>Korea</td>
<td>Asian</td>
<td>Population based</td>
<td>PCR-RFLP</td>
<td>0.24</td>
</tr>
</tbody>
</table>

PCR: polymerase chain reaction; PCR-RFLP: PCR-restriction fragment length polymorphism; TaqMan: TaqManSNP; HWE: Hardy-Weinberg equilibrium.

Table 2. Association of VEGF -634G/C polymorphism and ONFH risk

<table>
<thead>
<tr>
<th></th>
<th>CC versus GG</th>
<th>CC + CG versus GG</th>
<th>CC versus CG + GG</th>
<th>C versus G</th>
<th>CG versus GG</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR (95% CI)</td>
<td>P$_h$</td>
<td>OR (95% CI)</td>
<td>P$_h$</td>
<td>OR (95% CI)</td>
<td>P$_h$</td>
</tr>
<tr>
<td>Total</td>
<td>1.34 (1.02-1.76)</td>
<td>0.963</td>
<td>1.10 (0.94-1.29)</td>
<td>0.948</td>
<td>1.29 (1.00-1.66)</td>
</tr>
</tbody>
</table>

P$_h$: P-value of heterogeneity test.

C polymorphism and ONFH risk. Chi-square based Q-statistic test was used to evaluate heterogeneity across the studies (P_h<0.05 was considered significant) [19]. If the test of heterogeneity was significant, the random-effects model was used; otherwise the fixed-effects model [20, 21]. Pooled ORs were presented under the following genetic models: CC versus GG, CG versus GG, CC + CG versus GG, CC versus CG + GG and C versus G. The significance of pooled ORs was estimated via Z-test, and P<0.05 was considered statistically significant. Begg's test and Egger's test were adopted to detect publication bias, and P<0.05 was considered significant [22]. Sensitivity analysis was performed through omitting each study in turn to assess the consistency of pooled results. All statistical analyses were done with Stata software (version 12.0).

Results

Study characteristics

As shown in Figure 1, a total of 114 articles were retrieved by literature search using different combinations of key terms. After reviewing the titles and abstracts, 82 articles were excluded and subsequently 29 studies were excluded with reasons of not candidate-locus studies (16), no controls (5) and insufficient data (8). Finally, 692 cases and 875 controls, including 440 Chinese and 1,127 Koreans, were included. The characteristics of the included studies are summarized in Table 1. Genotyping methods in the studies included polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and TaqManSNP (TaqMan). HWE test was conducted for evaluating genotypes distribution of the controls in all studies. As a result, no studies deviate from HWE (P>0.05).

Meta-analysis results

The overall results are presented in Table 2. VEGF -634G/C polymorphism was significantly associated with increased risk for ONFH in CC versus GG genetic model (OR=1.34, 95% CI=1.02-1.76) (Figure 2). However, there was no evidence of significant association between the -634G/C polymorphism and risk of ONFH in other four genetic models (CC + CG versus GG: OR=1.10, 95% CI=0.94-1.29; CC versus CG + GG: OR=1.29, 95% CI=1.00-1.66; C versus G: OR=1.14, 95% CI=1.00-1.30 and CG versus GG: OR=1.11, 95% CI=0.93-1.32).

Heterogeneity and sensitivity tests

As shown in Table 2, no significant heterogeneity was detected in all genetic models. Thus, the fixed-effect model was used. Sensitivity analysis was performed through sequentially excluding each individual study in order to assess the stability of the combined results in the meta-analysis. The results demonstrated that no individual studies significantly affected the pooled ORs (data not shown).

Publication bias test

Publication bias was assessed by Begg’s funnel plot and Egger’s linear regression test. Obvious asymmetry was not shown based on shapes of the funnel plots (Figure 3). Moreover, Egger’s test showed no statistical evidence for publication bias (P=0.646).
Figure 2. Forest plot of risk of ONFH associated with VEGF -634G/C polymorphism (CC versus GG) by the fixed-effects model.
VEGF -634G/C Polymorphism and ONFH

Discussion

It has been demonstrated that genes play important roles in the pathophysiological process of ONFH [23-25]. ONFH commonly results from interruption of blood supply to the bone. And the angiogenic factor includes vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), epidermal growth factor (EGF), insulin-like growth factor (IGF-1) and platelet-derived growth factor (PDGF). Among these angiogenic factors, VEGF is one of the most potent proangiogenic growth factor, which plays crucial role in the process of blood coagulation [26]. The level of VEGF is up-regulated in chondrocytes in ischemic femoral heads [27].

Further studies showed that certain polymorphisms in the promoter and untranslated regions of VEGF could alter the expression level of VEGF. And -634G/C polymorphism was one of the polymorphism. Vailati FB et al. has reported that the C allele of -634G/C polymorphism is correlated with increased level of VEGF [28]. Additionally, several studies have reported that there exists relationship of VEGF -634G/C polymorphism with breast cancer, and preeclampsia (PE) [29, 30]. And the association of -634G/C polymorphism with ONFH risk was also investigated.

As for ONFH, Liu B et al. suggested that the CC genotype of VEGF -634G/C polymorphism was a risk factor [31]. Kim et al. also concluded that VEGF -634G/C polymorphism was related with ONFH susceptibility [32]. Whereas Lee et al. found that there was no association between VEGF -634G/C polymorphism and steroid-induced ONFH [7]. Based on published studies, our meta-analysis was aimed to evaluate the relationship of VEGF -634G/C polymorphism and ONFH risk in Asians. And a total of 692 cases and 875 controls were included in the analysis. The results showed that VEGF -634G/C polymorphism was related with increased risk for ONFH under CC versus GG genetic model.

Genotypes distribution in controls was consistent with HWE, which, to a large extent, enabled the credibility of our results. The sensitivity analysis and publication bias test both showed that our results were credible and stable.
However, there were several limitations in our analysis. Firstly, our meta-analysis only involves Asian population. Secondly, our analysis did not take gene-gene, gene-environment interaction into consideration. Lastly, the sample size was relatively small. Hence, more comprehensive studies needed to provide precise estimation of the relation.

Acknowledgements

The work is supported by application study of Capital clinical characteristics of China No Z121107001012093.

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Shubin Liu, Department of Orthopedics, 307 Hospital of PLA, 8 Fentaidongda Road, Beijing 100071, China. Tel: 86-10-66947316; Fax: 86-10-66947316; E-mail: liushubn@yeah.net

References

VEGF -634G/C Polymorphism and ONFH

