Original Article
Comparison of two different sevoflurane expelling methods on emergence agitation in infants following sevoflurane anesthesia

Yunliang Yang*, Tieying Song*, Hong Wang, Kunfeng Gu, Pengyu Ma, Xiaoqing Ma, Jianhui Zhao, Yuxia Li, JianHui Zhao, Guangyao Yang, Ruyu Yan

Department of Anesthesiology, The First Hospital of Shijiazhuang, 36 Fanxi Road, Chang'an District, Shijiazhuang 50011, Hebei Province, China. *Equal contributors.

Received December 30, 2014; Accepted April 10, 2014; Epub April 15, 2015; Published April 30, 2015

Abstract: Purpose: To investigate the effects of two different inhalation anesthetic expelling methods on emergence agitation in infants following sevoflurane anesthesia. Methods: 100 infants (1~3 years old) with cleft lip and palate and ASA classification I~II were randomized into two groups, a sevoflurane concentration decreasing expelling group (group N = 50 cases) and a low fresh gas flow expelling group (group D = 50 cases). The operation for cleft lip and palate repair was under general anesthesia, in which 30 minutes after initiation of narcosis ending extubation was indicated and after the tubes were removed the patients were sent to the post-anesthesia care unit (PACU) to record anesthesia times, emergence agitation scores, Ramsay scores and adverse reactions including drowsiness, respiratory depression, nausea and vomiting, chills, hiccough or laryngospasms. Results: There were no differences in anesthesia times, awaking time and time until extubation between the two groups. 10 min after start of expelling sevoflurane, blood pressure and heart rates were higher in group N than in group D (P<0.05). The postoperative agitation incidence and the degree of agitation were lower in group D than in group N (P<0.05). Conclusion: Postoperative agitation is prone to occur in patients with sevoflurane concentration decreasing expelling. Avoiding sevoflurane application maintenance in the stage of sevoflurane expelling reduces the occurrence of postoperative agitation and diminishes physiological and psychological harm.

Keywords: Infants, emergence agitation, sevoflurane, methods of expelling inhalational anesthetics

Introduction
Surgical procedures involving pediatric patients have frequently to be done under general anesthesia and the children are too young for cooperation during or immediately following the operation. Sevoflurane is an inhalational anesthetic agent used in general anesthesia and characterized by a sweet smell, low blood gas partition coefficient, short induction time and rapid recovery while causing little airway irritation [1]. At present, sevoflurane is already widely in use for general anesthesia induction and maintenance for various kinds of pediatric surgeries [2]. However, the incidence of emergence agitation following sevoflurane anesthesia is higher in children than in adults [3] and has been reported to be 10%–67% [4] and in children receiving ear-nose-throat and eye surgery, postoperative agitation occurs even more frequently than after other surgical procedures [5]. In addition, pre-school children aged 2-5 years old are documented to have higher incidences of agitation after general anesthesia than school-age children aged 6-10 years old [6, 7]. Postoperative agitation is mostly self-limited, but it can have negative consequences, for example, increasing bleeding, affecting sutures and drainage tubes due to body movement and struggling and may even affect relevant medical equipment [8-10]. Currently, the method used most often to intervene with emergence agitation in children involves the application of drugs, such as fentanyl, benzodiazepines as well as selective α2 adrenoceptor agonist [11-13]. There has been less research, however, examining whether the ways of breathing out inhalational anesthetics can affect emergence agitation in children following sevoflurane anesthesia. According to a 2011 inhala-
Emergence agitation following sevoflurane anesthesia

Table 1. Comparison of the age, weight, operation time, awakening time, extubation time, HR and MAP 10 min after expelling sevoflurane between the two groups (n = 50, mean ± SD)

<table>
<thead>
<tr>
<th>Groups</th>
<th>Age (years)</th>
<th>Weight (kg)</th>
<th>Operation time (min)</th>
<th>Awakening time (min)</th>
<th>Extubation time (min)</th>
<th>HR (beats/min)</th>
<th>MAP (mmHg)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group N</td>
<td>2.70 ± 0.70</td>
<td>12.56 ± 2.50</td>
<td>100.10 ± 25.10</td>
<td>6.70 ± 2.30</td>
<td>7.80 ± 2.10</td>
<td>98.00 ± 18.00***</td>
<td>64.00 ± 10.00***</td>
<td>0.148</td>
</tr>
<tr>
<td>Group D</td>
<td>2.30 ± 0.90</td>
<td>11.56 ± 3.65</td>
<td>102.45 ± 36.28</td>
<td>6.90 ± 1.80</td>
<td>8.10 ± 1.80</td>
<td>83.00 ± 15.00</td>
<td>50.00 ± 12.00</td>
<td>0.1073</td>
</tr>
</tbody>
</table>

P: 0.148 0.1073 0.7072 0.6293 0.4449 0.0000 0.0000

*P < 0.05, ***P < 0.001 when compared with group D.

Anesthesia methods

All patients were deprived of water for 4 h and were fasted for at least 6 h in the morning of the operation day and atropine was intramuscularly injected 30 min before surgery. Patients were kept warm with an electric blanket and connected to a monitor who recorded blood pressure, pulse, SPO_2 and respiration once every 5 min. For anesthesia induction we adopted a tidal volume method and the equipments were an Ohmeda 7100 anesthesia machine and an Ohmeda Tec 7 sevoflurane exclusive volatilizer. The anesthesia machine was in manual mode and the APL valve was set in the open position, with the evaporator open and the initial scale adjusted to 8% pre-charge sevoflurane in the breathing circuit, while the children were given sevoflurane mixture inhalations using suitable size masks. When the patient’s eyelash reflexes disappeared and the submaxilla relaxed, the oral tube intubation was performed. Volume controlled ventilation (VCV) was performed with tidal volume of 10 ml/kg and respiration rates of 20~30 bpm, while end-tidal carbon dioxide partial pressure (PETCO_2) was maintained at 35-45 mmHg. At the start of the operation, the inhalation concentration was adjusted to 2.5% (1MAC) and according to the children’s vital signs, further inhalation concentrations were adjusted and the inhaled sevoflurane was stabilized to 0.8-1.2 MAC with an oxygen flow rate of 2 L/min.

Sevoflurane expelling methods

Group N: 30 min prior to the operation end, the inhaled anesthetic concentration was reduced and maintained at about 0.5 MAC. After surgery was completed, the inhaled anesthetic supply was ceased with fresh gas flow increased to 8 L/min in order to accelerate the sevoflurane clearance. Group D: 30 min minutes ahead of the surgery end, the sevoflurane influx was turned off with reduced fresh gas flow of 0.5 L/min until subcuticular skin suturing was completed and then the fresh gas flow was increased to 4 L/min in order to accelerate the expelling of sevoflurane.
Emergence agitation following sevoflurane anesthesia

For our study, we selected children aged from 1 to 3 years as patients, whose average age was 2 years. Because these patients are not able to follow verbal instructions such as to open their eyes as the criteria for extubation, after the surgery they were extubated when the spontaneous breathing tidal volume was > 8 ml/kg and blood oxygen saturation (SpO_2) was > 98% with suction phlegm after swallowing reflex recovery. Patients were then sent to the post-anesthesia care unit (PACU). When the Modified Aldrete Score was greater than 9 (see Table 1), oxygen supply had been stopped for over 5 min and SpO_2 was higher than 95%, the patients were sent out of the PACU.

Observation indices

Patients’ mean arterial pressure (MAP) and heart rate 10 min after expelling sevoflurane were recorded. In addition, anesthesia time, awaking time (time from post-operation to opening eyes), and extubation time (time from post-operation to pulling out the tube) were monitored. Agitation score and Ramsay score [15] were observed once every 5 min after extubation until 20 min after awaking and recorded. Postoperative agitation score, incidence and degree were evaluated using a five-point scale method: 0-drowsy, unable to wake up; 1-awake, quiet, cooperative; 2-crying but consolable; 3-agitated, crying inconsolably, no need to control agitation; 4-agitated, disorientated, need to control agitation. A score ≥ 2 was considered positive for agitation and scoring was 2-mildly agitated, 3-moderately agitated whereas 4-severely agitated. Ramsay scores were as follows: 1-awake, anxious and agitated; 2-cooperative, orientated, quiet; 3-drowsy, responsive to order; 4-drowsy, sensitive to tapping eyebrow or loud auditory stimulating; 5-drowsy, slow to respond to tapping eyebrow or loud auditory stimulating; 6-drowsy, no response. A Ramsay score of 1 was therefore the only score considered positive for agitation. A score of 2-4 indicated satisfactory sedation, whereas a score of 5-6 indicated excessive sedation. After 3 days of surgery, patients were finally monitored for any adverse reactions such as drowsiness, respiratory depression, nausea and vomiting, chills, hic-cough or laryngospasm.

Statistical analyses

Measurement data were expressed as mean ± SD. Analysis of variance (ANOVA) and t-tests were used for comparisons. Count data were presented as n (%) and Chi-squared test was used for comparison. Data were analyzed using SPSS software (version 13) and $P < 0.05$ was considered statistically significant.

Results

There were no differences in age, weight or time under anesthesia between the two groups ($P > 0.05$) (Table 1), which showed that the basic characteristics of the two groups were equal. The overall concentration of sevoflurane was maintained to the same level of 1 MAC before sevoflurane expelling and operation time between the two groups. 10 min after start of expelling sevoflurane, the heart rate (HR) and mean arterial pressure (MAP) in group N were higher than in group D ($P < 0.05$) and no significant difference was noted in the awakening time or the extubation time ($P > 0.05$) (Table 1). We conclude therefore, that the method of expelling sevoflurane in group N affected the depth of anesthesia in the later stage of the operation causing a relatively shallow anesthesia. Vital signs thus fluctuated in the stage of

Table 2. Comparison of Sevoflurane concentrations (C_{ET}Sev) between the two groups just before start of expelling and just before extubation (n = 50)

<table>
<thead>
<tr>
<th>Group</th>
<th>C_{ET}Sev prior to leaching</th>
<th>C_{ET}Sev prior to extubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group D</td>
<td>2.5 ± 0.4</td>
<td>0.11 ± 0.05***</td>
</tr>
<tr>
<td>Group N</td>
<td>2.6 ± 0.3</td>
<td>0.21 ± 0.06</td>
</tr>
<tr>
<td>P</td>
<td>0.1605</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

* $P < 0.05$, *** $P < 0.001$ when compared with group D.

Table 3. The incidence and degree of postoperative agitation between the two groups [n = 50, n (%)]

<table>
<thead>
<tr>
<th>Groups</th>
<th>Mild (%)</th>
<th>Moderate (%)</th>
<th>Severe (%)</th>
<th>Total incidence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group N</td>
<td>10 (20)*</td>
<td>14 (28)*</td>
<td>6 (12)**</td>
<td>30 (60.0)**</td>
</tr>
<tr>
<td>Group D</td>
<td>6 (12)</td>
<td>2 (4)</td>
<td>0 (0.0)</td>
<td>8 (16)</td>
</tr>
<tr>
<td>P</td>
<td>0.0413</td>
<td>0.0011</td>
<td>0.0007</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

* $P < 0.05$, *** $P < 0.001$ when compared with group D.
Emergence agitation following sevoflurane anesthesia

expelling sevoflurane as compared with group D. Both groups started to expel sevoflurane 30 min before operation end and we compared the concentration of sevoflurane (CET Sev) just before start of sevoflurane expelling, which was the same in both groups (group D = 2.5 ± 0.4; group N = 2.6 ± 0.3). In contrast, at the time of extubation, the CET Sev for the group D was 0.11 ± 0.05, whereas for group N it was 0.21 ± 0.06.

Discussion

An inhalation anesthesia expert consensus published in 2011 suggested that both the concentration decreasing leaching method and the low flow leaching method could be used for the recovery of inhalation anesthesia. However, there is no report regarding the effect of the two methods for expelling inhalational anes-
Emergence agitation following sevoflurane anesthesia

Anesthetics on emergence agitation in children following sevoflurane anesthesia. In our study, all inhaled anesthetic eliminations were achieved by means of gas exchange among blood, tissue and cells. Gas molecules diffuse from the high partial pressure side to the low pressure side. The oxygen exchange thus conforms to the following rule: outside atmosphere → respiratory tract → pulmonary blood capillary → blood circulation → tissue blood capillary → tissue cells and carbon dioxide exchange occurs in the opposite direction. In vitro uptake, distribution and discharge process of inhaled anesthetics occur in an identical manner and sevoflurane is not an exception. Although the solubility of sevoflurane is relatively low, even with operation time extension, the time for the reduction of 60% or even 80% alveolar gas concentration is not affected by the anesthesia duration. However, getting rid of more than 90% anesthetics is needed for pharyngeal reflex to return to normal and when the anesthetic concentration exceeds 0.5%-0.8% MAC obvious pharyngeal dysfunctions appear [16]. Adverse reactions caused by incomplete sevoflurane elution are the main causes of emergence agitation in children. The results of our study showed, that with the same anesthesia time, there was a higher incidence of postoperative emergence agitation using the concentration decreasing leaching method compared to the low flow leaching method. We suggest that the difference is probably due to the fact, that during the process of sevoflurane elution, the depth of anesthesia became relatively shallow by inhaling 0.5 MAC sevoflurane and because of that, 10 min after sevoflurane expelling, HR and MAP in group N was higher than in group D (P < 0.05). In addition, the sevoflurane concentration was fast adjusted from 1 MAC to the stable 0.5 MAC concentration during end of surgery, while undesirable stimulation during this time might have also stimulated the occurrence of postoperative agitation. We suggest that because of the rapid recovery from sevoflurane anesthesia, the time of central recovery differs between the groups. While the cerebral cortex is in an inhibitory state, the subcortical regions have been liberated thus causing sensitization of local centers. Loss of this functional completeness affects children’s sensory response and processing ability. Children in the stage of awaking after general anesthesia are sensitive to undesirable stimulation under the role of stimulants. The central nervous system manifests overexcitement, so that agitation induction occurs [7]. However, the depth of anesthesia is moderate during the leaching stage using the low flow leaching method and the leaching process is in a stable state. The main reason for the occurrence of agitation using the low flow leaching method may be due to the still relatively incomplete elution of sevoflurane. Taken together, a small amount of remaining residual drugs in the awaking stage is the main reason for postoperative agitation and it was significantly higher in the N group. It has been reported that sevoflurane concentrations of 0.1-0.2 MAC in the awaking stage are the cause for tracheal tube irritation, wound pains [17], hypoxia, respiratory tract obstruction [16], while noisy environment triggers the occurrence of postoperative agitation [18]. In our study, comparisons of C_{ET}Sev just before start of expelling and just before extubation, postoperative agitations and Ramsay scores after operation between female and male patients did not reveal any statistically significant difference. This is in agreement with previous reports of gender influence on sevoflurane anaesthesia [19, 20]. On the other hand, it has been noted that the early recovery time after sevoflurane anesthesia was shorter in male than in female patients, which the authors explained with a lower minute ventilation of women, which may contribute to a slower initial washout of the inhalational agents [21].

In conclusion, postoperative agitation is prone to occur in preschool children, who receive a concentration decreasing leaching method after cleft lip and palate repair surgery under sevoflurane anesthesia. Proper drug use and combined anesthesia should be used for such little operations, especially avoiding pure inhalation anesthesia maintenance in the stage of sevoflurane leaching in order to stably and fully elute sevoflurane, thereby reducing the occurrence of postoperative agitation.

Acknowledgements

We specially thank Dr. Yunshui Peng from Chinese Journal of Anesthesiology for writing assistance and Dr. Zhimin Zheng from the First Hospital of Shijiazhuang for support.

Disclosure of conflict of interest

None.
Address correspondence to: Dr. Tieying Song, Department of Anesthesiology, The First Hospital of Shijiazhuang, 36 Fanxi Road, Chang’an District, Shijiazhuang 50011, Hebei Province, China. Tel: +86 311-86919349; Fax: +86 311-86919221; E-mail: songtieyingBM@163.com

References

