Original Article

NUDT11 rs5945572 polymorphism and prostate cancer risk: a meta-analysis

Wencheng Li¹, Min Gu²

¹Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China; ²Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China

Received December 14, 2014; Accepted February 3, 2015; Epub March 15, 2015; Published March 30, 2015

Abstract: The association between the NUDT10 rs5945572 polymorphism and prostate cancer (PCa) was not clear. We thus conducted a meta-analysis to assess the association between NUDT10 rs5945572 polymorphism and PCa risk. A literature search was carried out using PUBMED, EMBASE, and Cochrane Library Central database before Dec 2014. The strength of the associations between the NUDT10 rs5945572 polymorphism and PCa risk was measured by odds ratios (OR) with 95% confidence intervals (CI). The random-effects model was used. NUDT10 rs5945572 polymorphism was significantly associated with PCa risk (OR = 1.22, 95% CI 1.19-1.26, \(P < 0.001 \), \(I^2 = 0\%), Figure 2). In the subgroup analysis by ethnicity, a significant association was found among Caucasians (OR = 1.25, 95% CI 1.00-1.57, \(P = 0.05 \), \(I^2 = 0\%), and Asians (OR = 1.23, 95% CI 1.19-1.28, \(P < 0.001 \), \(I^2 = 0\%), and Africans (OR = 1.22, 95% CI 1.03-1.45, \(P = 0.02 \), \(I^2 = 48\% \)). In conclusion, this meta-analysis found a significant association between NUDT10 rs5945572 polymorphism and prostate cancer.

Keywords: Prostate cancer, NUDT10, meta-analysis, polymorphism

Introduction

Prostate cancer (PCa) is the most common non-cutaneous malignancy in American men, afflicting one in six men. It is estimated that in the USA, one new case occurs every 2.4 min and a death results every 16.4 min from prostate cancer. The cause of PCa is not well known, but multiple risk factors have been identified, including age, race, and family history of PCa. Many putative risk factors, including androgens, diet, physical activity, sexual factors, inflammation, and obesity, have been investigated, but their roles in PCa etiology remain unclear [1]. Recently, genetic factor was also reported to be an important risk factor for PCA [2-6].

NUDT10 gene is located in Xp11.22. Several genome-wide association (GWA) studies suggested that the susceptibility locus at NUDT10 may be involved in PCa risk [7-19]. However, the results were inconsistent. To our knowledge, no meta-analysis has been conducted to evaluate the association between NUDT10 rs5945572 polymorphism and PCa risk. Thus, we performed a meta-analysis of observational studies to assess the association between NUDT10 rs5945572 polymorphism and PCa risk.

Methods

Publication search

A literature search was carried out using PUBMED, EMBASE, and Cochrane Library Central database before Dec 2014. There were no restriction of origin and languages. Search terms included: “NUDT10” and “Prostate cancer”. The reference lists of each comparative study included in this meta-analysis and previous reviews were manually examined to identify additional relevant studies.

Inclusion criteria

Two reviewers independently selected eligible trials. Disagreement between the two reviewers was settled by discussing with the third reviewer. Studies were selected if they met our criteria for study design (cohort study or case-control study), population (patients with PCa), outcome
NUDT11 and prostate cancer

Data extraction

The following data was collected by two reviewers independently using a purpose-designed form: name of first author, publishing time, race, age, number of controls, number of PCa cases, and source of controls.

Quality assessment

Newcastle-Ottawa scale (NOS) was used to assess the methodological quality of cohort and case-control studies. The NOS contains eight items that are categorized three categories: selection (four items, one star each), comparability (one item, up to two stars), and exposure/outcome (three items, one star each). A “star” presents a “high-quality” choice of individual study. Two reviewers assessed the methodological quality independently. Disagreement between the two reviewers was settled by discussing with the third reviewer.

Statistical analysis

The strength of the associations between the NUDT10 rs5945572 polymorphism and PCa risk was measured by ORs and 95% CIs. The random-effects model was used. The statistical significance of summary OR was determined with Z test. The Q statistic and the I² statistic were used to assess the degree of heterogeneity among the studies included in the meta-analysis. The distributions of genotypes in controls were tested by Hardy-Weinberg equilibrium (HWE) using the Chi-square test. Subgroup analyses were carried out by ethnicity. Sensitivity analysis and cumulative meta-analysis were performed. The potential publication bias was examined visually in a funnel plot of log[OR] against its standard error (SE), and the degree of asymmetry was tested using Egger’s test. All statistical tests were performed using STATA 11.0 software (Stata Corporation, College Station, TX, USA). A P value < 0.05 was considered statistically significant.

Results

Study characteristics

Figure 1 shows the flow diagram for study selection. A total of 46 citations were identified by the initial search. On the base of the titles and abstracts, we identified 24 full-text articles. After further evaluation, 11 studies were excluded. None study was identified from reference lists. At last, a total of 13 eligible studies were identified [7-19]. A total of 76730 male subjects, including 28370 PCa cases and 48360 controls were involved. Most of the studies included Caucasians. The characteristics of the included studies are summarized in Table 1. The NOS scores for the included studies ranged from 7 to 9, with a median 8; all these studies were deemed to be of a high quality (shown in Table 2).
Overall and subgroup meta-analysis results

NUDT10 rs5945572 polymorphism was significantly associated with PCa risk (OR = 1.22, 95% CI 1.19-1.26, P < 0.001, I² = 0%, Figure 2). In the subgroup analysis by ethnicity, a significant association was found among Caucasians (OR = 1.25, 95% CI 1.00-1.57, P = 0.05, I² = 0%), and Asians (OR = 1.23, 95% CI 1.19-1.28, P < 0.001, I² = 0%), and Africans (OR = 1.22, 95% CI 1.03-1.45, P = 0.02, I² = 48%). As shown in Figures 3 and 4, sensitivity analysis and cumulative meta-analysis suggested that the results of this study were robust and stable.

The potential publication bias was evaluated by funnel plot and Egger’s test. No visual publication bias was found in the funnel plot (Figure 5). And Egger’s test suggested that no publication bias was detected (P = 0.07).

Discussion

Many studies have indicated that genetics have a critical role in the prostate cancer [20, 21]. Zhou et al. suggested that short tandem repeat polymorphism of TAAA in the promoter region of PCA3 gene is a risk-increasing factor for prostate cancer in the Chinese population [22]. Xu et al. suggested that IL-1B-511 (rs16944) and IL-1B-31 (rs1143627) are significantly associated with PCa risk [23]. Zhao and colleagues found that eNOS gene 894G>T polymorphism might be a risk factor in the onset of PCa [24]. Chu et al. indicated that there is the significant association between the functional promoter variant rs4705342T>C in miR-143 and PCa risk [25].

This study demonstrates that there is a significant positive relationship between NUDT10 rs5945572 polymorphism and prostate can-
NUDT11 and prostate cancer

Table 2. Methodological quality of the included studies

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Adequate definition of cases</th>
<th>Representative-ness of cases</th>
<th>Selection of controls</th>
<th>Definition of controls</th>
<th>Control for important factors</th>
<th>Ascertainment of exposure</th>
<th>Same method of ascertainment for cases and controls</th>
<th>Non-response rate</th>
<th>Total stars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eeles 1</td>
<td>2008</td>
<td>☆</td>
<td>☆</td>
<td>☆</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Eeles 2</td>
<td>2008</td>
<td>☆</td>
<td>☆</td>
<td>☆</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Eeles 3</td>
<td>2008</td>
<td>☆</td>
<td>☆</td>
<td>☆</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Gudmundsson 1</td>
<td>2008</td>
<td>☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Gudmundsson 2</td>
<td>2008</td>
<td>☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Gudmundsson 3</td>
<td>2008</td>
<td>☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Gudmundsson 4</td>
<td>2008</td>
<td>☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Gudmundsson 5</td>
<td>2008</td>
<td>☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Gudmundsson 6</td>
<td>2008</td>
<td>☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Gudmundsson 7</td>
<td>2008</td>
<td>☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Gudmundsson 8</td>
<td>2008</td>
<td>☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Camp</td>
<td>2009</td>
<td>★</td>
<td>☆</td>
<td>☆</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>FitzGerald</td>
<td>2009</td>
<td>★</td>
<td>☆</td>
<td>☆</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Lu 1</td>
<td>2009</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Lu 2</td>
<td>2009</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Waters 1</td>
<td>2009</td>
<td>★</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Waters 2</td>
<td>2009</td>
<td>★</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Waters 3</td>
<td>2009</td>
<td>★</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Waters 4</td>
<td>2009</td>
<td>★</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Waters 5</td>
<td>2009</td>
<td>★</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Helfand</td>
<td>2010</td>
<td>★</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Hooker</td>
<td>2010</td>
<td>★</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Chang</td>
<td>2011</td>
<td>★</td>
<td>—</td>
<td>—</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Liu</td>
<td>2011</td>
<td>★</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Vijai</td>
<td>2011</td>
<td>★</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Johansson</td>
<td>2012</td>
<td>★</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Lange</td>
<td>2012</td>
<td>★</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>★☆</td>
<td>☆</td>
<td>□</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>
NUDT11 and prostate cancer

Figure 2. Meta-analyses of the NUDT10 rs5945572 polymorphism and prostate cancer.

Figure 3. Cumulative meta-analysis of associations between NUDT10 rs5945572 polymorphism and prostate cancer.

This conclusion agrees with many previous epidemiological studies mentioned above [7-19], which indicate that the NUDT10 could promote the prostatic carcinogenesis via multiple signaling pathways. NUDT10 might be involved in inhibiting apoptosis, promoting cell proliferation, and inducing tumor suppressor gene loss. However, the detailed mechanism is not clear and should be investigated in the future studies. In the subgroup analysis of ethnicity, significant associations were observed in Caucasians, Asians, and Africans, suggesting that this polymorphism might play the same role in the prostatic carcinogenesis in different races.

Limitations of this meta-analysis should be noted. First, we did not search for unpublished studies, so only published studies were included in our meta-analysis. Therefore, publication bias may have occurred although no publication bias was indicated from both visualization of the funnel plot and Egger’s test. Second, a lack of original data from the eligible studies limited evaluation of the effects of the gene-gene and gene-environment interactions during PCa development. Third, the association between glargine insulin and risk of PCa in Asian population and Africans population was performed with only two studies. So more studies need to further investigate the association in the future.

In conclusion, this meta-analysis found a significant association between NUDT10 rs5945572 polymorphism and prostate cancer.
NUDT11 and prostate cancer

Figure 4. Sensitivity analysis for NUDT10 rs5945572 polymorphism and prostate cancer.

Figure 5. Funnel plot between the NUDT10 rs5945572 polymorphism and prostate cancer.

Disclosure of conflict of interest

None.

Address correspondence to: Min Gu, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, GuangZhou Road 300, Nanjing 210029, Jiangsu, China. Tel: 86-025-68136580; E-mail: lancetgu@aliyun.com

References

NUDT11 and prostate cancer

NUDT11 and prostate cancer

[23] Xu H, Ding Q, Jiang HW. Genetic Polymorphism of Interleukin-1A (IL-1A), IL-1B, and IL-1 Receptor Antagonist (IL-1RN) and Prostate Cancer Risk. Asian Pac J Cancer Prev 2014; 15: 8741-7.
